
DEEP LEARNING: INTRODUCTION
Caio Corro

￼1

ABOUT THE COURSE

Grading scheme

➤ 50% : Lab exercises

➤ 50% : Exam

http://caio-corro.fr/class_dl.html

￼2

Teachers

➤ Lectures: Michèle Sebag and Caio Corro

➤ Lab exercises: Caio Corro

All information will be
on this websiteSummary of the course

➤ Introduction to neural networks

➤ Efficient training

➤ Convolutional neural networks and a few other architectures

➤ Generative models (GAN, VAE)

➤ Introduction to Pytorch

http://teaching.caio-corro.fr/2020-2021/OPT4/

REQUIREMENTS

Background

➤ Basics in machine learning

➤ Derivative computation

➤ Python

Programming

➤ Python 3 + Jupyter notebook

➤ Libraries: numpy, matplotlib, pytorch

Other

➤ Pen + paper!

￼3

PRE-DEEP LEARNING ERA

1
0

0.34
−5

Feature
extractor Classifier Prediction!

The « old school » machine learning pipeline

Feature extraction

➤ Problem dependent

➤ Images : SIFT features, invariant to translation, scaling, etc.

➤ Text : Stemming, lemmatisation

➤ Automatic or manual

➤ Raw data (sometimes…)

￼4

PRE-DEEP LEARNING ERA

1
0

0.34
−5

Feature
extractor Classifier Prediction!

The « old school » machine learning pipeline

Example of classifiers

➤ Decision Tree:

➤ Make a decision considering a limited number of features

➤ Use conjunction of features to make a prediction

➤ K-nearest neighbors:

➤ All features are used and considered equals

➤ Perceptron/linear classifier:

➤ Weight features so they are more or less important to make a decision

￼5

DEEP LEARNING

Neural Network Prediction!

The deep learning « pipeline »

What’s the difference?

➤ No (or limited) feature extraction: use raw data as input!

➤ Complicated classifier: a neural network is (really) big non-convex function

￼6

Neural architecture design

➤ What kind of parameterized mathematical functions?

➤ Image input: Convolutions? or others.

➤ Text input: Recurrent neural networks? or others.

➤ How many parameters?

➤ How many layers?

Equivariant to translation

Take into account the sequential
nature of the input

BUILDING NEURAL NETWORKS

Architecture design

Neural network = complicated parameterized function

➤ Inductive bias: take into account the data properties to design the architectures

➤ Time complexity/speed

➤ Mathematical properties for efficient training: 

differentiability, prevent vanishing/exploding gradient, ...

Parameter optimization

➤ Efficient optimization algorithms (i.e. first order gradient-based methods)

➤ Prevent overfitting

➤ Parallelized training (outside the scope of this course)

￼7

PERCEPTRON / LINEAR
CLASSIFICATION

￼8

BIOLOGICAL INSPIRATION OF THE PERCEPTRON

Roughly

➤ A (brain) neuron receives signals

➤ Depending on the value of the signals, 

it triggers or not an output

Picture stolen from: https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network

Bio-inspired classifier

➤ Perceptron/neural network neurons have most probably been inspired from biology

➤ BUT they are different and work differently

➤ The biology comparison is limited and misleading

➤ 99.99% of Machine Learning is unrelated to human brain 

=> don’t use human brain motivation/inspiration/comparaison (PLEASE DON’T)

￼9

https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network

MAIN IDEA

￼10

Classifier

Parameterized function fθ : 𝒳 → 𝒴

Parameters

Input space

Score/output space

Different types of prediction

➤ Regression: predict a scalar value

➤ Binary classification: yes/no, cat/dog, etc

➤ Multiclass classification: cat/dog/mice/…

Training/learning

➤ Search for the best parameters , 

that is the parameters that make the function predict the correct output
θ

BINARY LINEAR CLASSIFIER: INTUITION

Points in one class

Points in the other
class

Hyperplane that separates
the two classes

￼11

Let and be two vectors.a ∈ ℝn a ∈ ℝn

DOT PRODUCT 1/2

a⊤x = ⟨a, x⟩ =
n

∑
i=1

ai × xi

a =

a1
a2. . .
an

x =

x1
x2. . .
xn

The dot product is defined as:

Transpose and 
matrix multiplication

Properties

➤ where is the magnitude of the vector:a⊤x = ∥a∥∥x∥ cos θ ∥a∥ =

n

∑
i=1

a2
i∥w∥

➤ if and only if vectors a and x are orthogonala⊤x = 0

￼12

DOT PRODUCT 2/2

a xx′￼

a

x
x′￼

a

x

x′￼

a⊤x = ∥a∥∥x∥ cos θ

∥a∥ ≥ 0

➤

➤

0 50 100 150 200 250 300 350
�1

�0.5

0

0.5

1

θ

cos(θ)

Positive dot product Negative dot product Null dot product

a⊤x > 0 a⊤x′￼> 0 a⊤x < 0 a⊤x′￼< 0 a⊤x = 0 a⊤x′￼= 0

￼13

BINARY LINEAR CLASSIFIER: DEFINITION

fθ(x) = {
−1 if a⊤x + b ≤ 0,

1 if a⊤x + b > 0.

Classification function

➤ In general:

➤ Binary case:

fθ : 𝒳 → 𝒴

fθ : ℝn → {−1,1}

Perceptron

➤ Let the parameters be

➤ Classification function:

θ = {a, b}

Positive class

a

Negative class

Negative class

a

Positive class

￼14

PERCEPTRON FOR BINARY CLASSIFICATION

In a nutshell

➤ Parameters:

➤ Decision boundary is the set of points that solves: 

➤ The decision boundary is an hyperplane

θ = {a, b}

fθ(x) = {
−1 if a⊤x + b ≤ 0,

1 if a⊤x + b > 0.

a⊤x + b = 0

Remaining questions

➤ Does an hyperplane that separates data always exists?

➤ How do we find this hyperplane, i.e. how do we compute w and b?

￼15

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼16

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼16

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼16

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼16

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼16

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼16

CONVEX SET

Definition

Let be a set of points. C is convex if and only if:C ∈ ℝn

∀x, y ∈ C, ϵ ∈ [0,1] : ϵ × x + (1 − ϵ) × y ∈ C
Or, in other words, for every couple of points in C, their convex combination must
also be in C.

(Picture from Convex Optimization, Boyd and Vandenberghe)

Convex set Non-convex set

￼17

CONVEX HULL

(Picture from Convex Optimization, Boyd and Vandenberghe)

Definition

The convex hull of a set is the set of all convex combinations of points in C:C ∈ ℝn

conv C = {ϵ1x1 + . . . + ϵkxk | ∀i = 1...k : xi ∈ C, ϵi ≥ 0,ϵ1 + . . . + ϵk = 1}

Or, in other words, it is the smallest convex set that contains S

￼18

SEPARATING HYPERPLANE
Theorem

Let and be two convex sets. 
If C and D does not intersect, i.e. then there exist a separating 
hyperplane such that:

C ∈ ℝn D ∈ ℝn

C ∩ D = ∅

∀x ∈ C : a⊤x + b ≥ 0
∀x ∈ D : a⊤x + b ≤ 0

where w and b parameterize the separation hyperplane.

(Picture from Convex Optimization, Boyd and Vandenberghe)
￼19

PARAMETER OF THE SEPARATING HYPERPLANE

C

Dx

y

Closed form solution

See Convex Optimization (Boyd and Vandenberghe) section 2.5.1.

￼20

PARAMETER OF THE SEPARATING HYPERPLANE

C

Dx

y

Closed form solution

See Convex Optimization (Boyd and Vandenberghe) section 2.5.1.

In practice

➤ Data is not linearly separable (i.e. such a hyperplane does not exists)

➤ Computing global solutions can be very expensive with big datasets

➤ Online algorithm are preferable ￼20

HOW TO SEPARATE THE DATA?

￼21

HOW TO SEPARATE THE DATA?

￼22

HOW TO SEPARATE THE DATA?

￼23

HOW TO SEPARATE THE DATA?

￼24

MULTI-LAYER
PERCEPTRON

￼25

MAIN IDEA

￼26

Classifier

Parameterized function fθ : 𝒳 → 𝒴

Parameters

Feature space

Score/output space

Intuition behind multi-layer perceptrons

➤ Compute « latent » hidden representations so that classes are linearly separable

➤ Use non-linear activation units so the transformation is not convex

How to deal with non-separable inputs?

➤ Manually transform the inputs :(

➤ Learn automatically a transformation?

Linear classifier

➤ Input dim: 3

➤ Output dim: k=4 classes

➤ Prediction: class with maximum weight

LINEAR CLASSIFIER FOR MULTI-CLASS CLASSIFICATION

￼27

Problem

➤ Input: features

➤ Output: 1-in-k prediction

= +

×

w A b

x

w = Ax + b

➤ : trainable parameters

➤ : piecewise non-linear activation function

➤ : input features

➤ : hidden representations

➤ : output logits

z(i)

w

θ = {A(1), b(1), . . . }x
σ

MULTILAYER PERCEPTRON 1/2

= σ(+

×

z(1) A(1) b(1)

x

)

z(1) = σ (A(1)x + b(1)) z(2) = σ (A(2)z(1) + b(2)) w = A(3)z(2) + b(3)

Output projectionFirst hidden layer Second hidden layer

￼28

NON-LINEAR ACTIVATION FUNCTIONS 1/2

Main idea

➤ Apply a non-linear transformation

➤ Piecewise (so its fast to compute)

➤ There are many possibilities 

(I’ll just present 3 of them)

Sigmoid

σ(u) =
exp(u)

1 + exp(u)
=

1
1 + exp(−u)

= σ()

σ()
σ()
σ()
σ()

￼29

NON-LINEAR ACTIVATION FUNCTIONS 2/2

Hyperbolic tangent (tanh)

Rectified Linear Unit (relu)

tanh(u) =
exp(2u) − 1
exp(2u) + 1

relu(u) = max(0,u)

￼30

￼31

Graphical or mathematical representation?

➤ Use a graphical representation only if required

➤ Alway prefer the mathematical description!

Code example!

￼32

PREDICTION FUNCTION

￼33

Vocabulary issue

The term "prediction function" can refer to both the "full model" or only the function that
transforms the class weights/logits/scores to an actual output. :(

DO NOT CONFUSE

➤ The (non-linear) activation function (inside the neural network)

➤ The function that transforms weights/logits/scores into an output 

(at the output of the neural network)

BINARY CLASSIFICATION

￼34

= +
×

w a⊤ b

z

Prediction functions

➤ 0 / 1 prediction : 

➤ -1 / 1 prediction 

➤ Probabilistic loss (output is the parameter of a Bernoulli distribution)

ŷ(w) = {1 if w ≥ 0
0 otherwise

ŷ(w) = {1 if w ≥ 0
−1 otherwise

ŷ(w) = σ(w) =
exp(w)

1 + exp(w)

hidden representation computed
by the neural network

￼35

￼36

BINARY CLASSIFICATION

￼37

= +
×

w a⊤ b

z

Loss functions

➤ Hinge loss (gold is 0/1) :

➤ Hinge loss (gold is -1/1) :

➤ Negative log-likelihood (or cross-entropy) (gold is 0/1) : 
 

➤ Negative log-likelihood (or cross-entropy) (gold is -1/1)

ℓ(y, w) = − yw + log(1 + exp(w))

hidden representation computed
by the neural network

ℓ(y, w) = log(1 + exp(−yw))

ℓ(y, w) = max(0, 1 − (2y − 1)w)

ℓ(y, w) = max(0, 1 − yw)

MULTICLASS CLASSIFICATION

￼38

= +

×

w A b

z

hidden representation computed
by the neural network

Prediction functions

➤ Integer output :

➤ One-hot vector output :

➤ Probabilistic output (i.e. distribution over classes) :

ŷ(w) = argmaxi∈{1,...,k} wi

ŷ(w) = argmaxy∈E(k) ⟨ y, w ⟩

ŷ(w) = softmax(w)

E(k) is the set of one-hot
vector of dim. k

MULTICLASS CLASSIFICATION

￼39

= +

×

w A b

z

hidden representation computed
by the neural network

Loss functions

➤ hinge loss (m >= 0 is the margin) :

➤ Negative log-likelihood : 
(also called cross-entropy)

ℓ(y, w) = max(0, m − ⟨y, w⟩ + max
y′￼∈E(k)∖{y}

⟨y′￼, w⟩

ℓ(y, w) = − ⟨ y, w ⟩ + log∑
i

exp wi

REGRESSION

￼40

= +
×

w a⊤ b

z

Prediction functions

➤ Trivial : ŷ(w) = w

Loss functions

➤ Quadratique error loss :

➤ Absolute error loss :

ℓ(y, w) = (y − w)2

ℓ(y, w) = |y − w |

hidden representation computed
by the neural network

NEURAL ARCHITECTURES: 
A REALLY QUICK OVERVIEW

￼41

NEURAL ARCHITECTURE DESIGN

Neural network = complicated parameterized function

➤ Inductive bias: take into account the data to design the architectures

➤ Time complexity/speed

➤ Mathematical properties for efficient training: 

differentiability, prevent vanishing/exploding gradients

￼42

CONVOLUTIONAL NEURAL NETWORKS (CNN)
Intuition

No matter where the cat is in the picture, it is a cat

=> we want to encode this fact in the neural architecture!

Equivariant function

If we apply a transformation on the input, 
the output will be transformed in the « same » way

Invariant function

If we apply a transformation on the input, 
the output will remain the same ￼43

EQUIVARIANT CONVOLUTIONS IN COMPUTER VISION
Translation equivariant convolution

Preserves the « translation structure »

➤ If the input is transposed

➤ The output is also transposed

+ pooling will make the model invariant

￼44

EQUIVARIANT CONVOLUTIONS IN COMPUTER VISION
Translation equivariant convolution

Preserves the « translation structure »

➤ If the input is transposed

➤ The output is also transposed

+ pooling will make the model invariant

Rotation equivariant convolution

Preserves the « rotation structure »

➤ If the input is rotated

➤ The output is also rotated

Standard convolution is not rotation equivariant

￼44

GROUP CONVOLUTIONS [Cohen and Weiling, 2016]

￼45

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

The dog is eating

Token representation

Sentence representation

￼46

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

Token representation

Sentence representation

￼46

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

Forward RNN

The dog is eating

Token representation

Sentence representation

￼46

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

Forward RNN

Backward RNN

The dog is eating

Token representation

Sentence representation

￼46

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

For token representation,
we concatenate the output

of each RNN

The dog is eating

Token representation

Sentence representation

￼46

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

For token representation,
we concatenate the output

of each RNN

The dog is eating

Token representation

Sentence representation

￼46

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

For token representation,
we concatenate the output

of each RNN
For sentence

representation, we
concatenate the output of
the last cell of each RNN

The dog is eating

Token representation

Sentence representation

￼46

SEQUENCE TO SEQUENCE (SEQ2SEQ)

Intuition

1. Encoder: encode the input sentence into a fixed size vector (sentence embedding)

2. Decoder: generate the translation auto-regressively (word by word) conditioned on
the input sentence embedding

The dog is running

z

<BOS> le chien court

le chien court <EOS>
1 2

￼47

SEQUENCE TO SEQUENCE (SEQ2SEQ)

Intuition

1. Encoder: encode the input sentence into a fixed size vector (sentence embedding)

2. Decoder: generate the translation auto-regressively (word by word) conditioned on
the input sentence embedding

The dog is running

z

<BOS> le chien court

le chien court <EOS>
1 2

The sentence embedding is a bottleneck, 
everything must be encoded inside!!

￼47

SEQ2SEQ WITH ATTENTION
Intuition

➤ During decoding, we want to « look » at the input sentence

➤ Particularly, we want to focus on specific words

The dog is running

z

<BOS> le

le ?

Here we need to generate
« chien », so maybe we could look

at « dog » in the input to help?

[Bahdanau et al., 2014]

￼48

SEQ2SEQ WITH ATTENTION
Intuition

➤ During decoding, we want to « look » at the input sentence

➤ Particularly, we want to focus on specific words

The dog is running

z

<BOS> le

le ?

Here we need to generate
« chien », so maybe we could look

at « dog » in the input to help?

Attention mechanism

We had a « module » that wil learn to look at a word from the input

[Bahdanau et al., 2014]

￼48

TAKEAWAY

You need to understand the problem you try to solve 
in order to build good neural architecture

➤ Michèle will present several neural architectures

➤ Other course: « Deep Learning for Natural Language Processing » (Master 2) 

Focus on specific neural architectures for text!

￼49

NEURAL NETWORK
TRAINING

￼50

GRADIENT-BASED TRAINING

Neural network

Parameterized function fθ : 𝒳 → 𝒴

Parameters

Feature space

Output space

End-to-end training

➤ In the old days: layer per layer training (in some kind of generative model)

➤ Nowadays: Train all parameters at the same time 

(+ unsupervised pretraining in some cases => DL4NLP course)

Training

➤ Labeled example: features + « gold » answer

➤ Train set:

➤ Find parameters so that

D = {(x(i), y(i))}n
i=1

θ fθ(x(i)) ≃ y(i), ∀i

Testing / evaluation

➤ Test if the model generalizes to unseen data (i.e. disjoint set from the train set) ￼51

LOSS FUNCTION

Intuition

➤ Compare the output with the gold output (i.e. the expected output)

➤ The loss must be minimized (& bounded below by 0)

➤ Must be related to the evaluation function, but often slightly different

θ* = argminθ
1
n

n

∑
i=1

l(y(i), fθ(x(i)))

Learning objective

➤ Modern machine learning is optimization

￼52

GRADIENT DESCENT

Intuition

➤ All you can compute: evaluate the function and its gradient at a given point

➤ You can use gradient information to see in which direction the function is decreasing

➤ Therefore: just make a small step in this direction!

➤ In this course we won’t differentiate between gradient and sub-gradient

Formally

➤ Choose an initial point randomly:

➤ Make T iterations/steps:

θ(0)

θ(t+1) = θ(t) − η × ∇θg(θ)

Problem

Solve: min

θ
g(θ)

Stepsize ￼53

NON-CONVEX FUNCTION ILLUSTRATION

Many local minima! Do we care? NO
￼54

TRAIN/DEV/TEST

Three datasets

➤ Train set: 

Used to compute the objective and its gradient

➤ Development / validation set:  

Used during training to choose hyper-parameters and to know when to stop training

➤ Test set: 

Used to evaluate the model!

Parameters vs. hyper-parameters

➤ Parameters: the parameters of the function, which are learned during training

➤ Hyper-parameters: the parameters of the training algorithm and the neural

architecture choice (number of layers, hidden representation dimensions, …)

￼55

THE OVERFITTING
PROBLEM

￼56

GENERALIZATION

￼57

Overparameterized neural networks

➤ Networks where the number of parameters exceed the training dataset size.

➤ Can learn by heart the dataset, 

i.e. overfit the data -> does not generalize well to unseen data

➤ Are easier to optimize in practice

Monitoring the training process

➤ Loss should go down

➤ Training accuracy should go up

➤ Dev accuracy should go up

Regularization

Techniques to control parameters during learning and prevent overfitting

LEARNING WITH RANDOM INPUTS AND LABELS 1/2 [ZHANG ET AL., 2017]

￼58

LEARNING WITH RANDOM INPUTS AND LABELS 2/2 [ZHANG ET AL., 2017]

￼59

SOLVING THE OVERFITTING PROBLEM VIA DROPOUT [HINTON ET AL., 2012]

￼60

(more details about dropout next week, just for illustration)

COMPUTATIONAL GRAPHS

￼61

MAIN IDEA BEHIND NN LIBRARIES

Problem

➤ We need the gradient of the objective for training

➤ We don’t want to compute it by ourselves, too complicated

Back-propagation algorithm (next week!)

➤ Forward pass: define the function to compute (i.e. the objective)

➤ Backward pass: automatically compute the gradient wrt parameters :)

Computational graph

During the forward pass, we construct a computational graph that retain all
operations used to compute the objective

￼62

A TYPOLOGY OF NEURAL NETWORK LIBRARIES

Static computational graphs

Defines the computation graph once for all, just update the inputs 
(ex: Tensorflow, Dynet C++ API)

Dynamic computational graphs

Each time we need to compute a value, we have to rebuild the full graph

➤ Eager: computation are done immediately (ex: Pytorch 1, Tensorflow)

➤ Lazy: first define the computation, the execute it (ex: Dynet) 

=> allows for forward pass optimization!

￼63

