
Deep Learning
Gradient-based optimization

Caio Corro

Université Paris-Saclay

Table of contents

Recall: neural networks

The training loop

Backpropagation

Vanishing gradient, activation functions and initialization

Regularization

Better optimizers

2 / 64

Recall: neural networks

3 / 64

Neural network

▶ x: input features
▶ z(1), z(2): hidden representation
▶ w : output logits or class weights
▶ p: probability distribution over classes
▶ θ = {A(1), b(1), ...}: parameters
▶ σ: non-linear activation function

z(1) = σ
(
A(1)x + b(1)

)
z(2) = σ

(
A(2)z(1) + b(2)

)
w = σ

(
A(3)z(2) + b(3)

)
p = Softmax(w) i.e. pi = exp(wi)∑

j exp(wj)
x1 x2 x3 x4

z(1)
1 z(1)

2 z(1)
3 z(1)

4 z(1)
5

z(2)
1 z(2)

2 z(2)
3 z(2)

4 z(2)
5

w1 w2 w3 w4 w5

p

4 / 64

Neural network

▶ x: input features
▶ z(1), z(2): hidden representation
▶ w : output logits or class weights
▶ p: probability distribution over classes
▶ θ = {A(1), b(1), ...}: parameters
▶ σ: non-linear activation function

z(1) = σ
(
A(1)x + b(1)

)
z(2) = σ

(
A(2)z(1) + b(2)

)
w = σ

(
A(3)z(2) + b(3)

)
p = Softmax(w) i.e. pi = exp(wi)∑

j exp(wj)

x1 x2 x3 x4

z(1)
1 z(1)

2 z(1)
3 z(1)

4 z(1)
5

z(2)
1 z(2)

2 z(2)
3 z(2)

4 z(2)
5

w1 w2 w3 w4 w5

p

4 / 64

Neural network

▶ x: input features
▶ z(1), z(2): hidden representation
▶ w : output logits or class weights
▶ p: probability distribution over classes
▶ θ = {A(1), b(1), ...}: parameters
▶ σ: non-linear activation function

z(1) = σ
(
A(1)x + b(1)

)
z(2) = σ

(
A(2)z(1) + b(2)

)
w = σ

(
A(3)z(2) + b(3)

)
p = Softmax(w) i.e. pi = exp(wi)∑

j exp(wj)
x1 x2 x3 x4

z(1)
1 z(1)

2 z(1)
3 z(1)

4 z(1)
5

z(2)
1 z(2)

2 z(2)
3 z(2)

4 z(2)
5

w1 w2 w3 w4 w5

p

4 / 64

Representation learning: Computer Vision [Lee et al., 2009]

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

are not conditionally independent of one another given
the layers above and below. In contrast, our treatment
using undirected edges enables combining bottom-up
and top-down information more e�ciently, as shown
in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers;
weight-sharing (convolutions) further speeds up the
algorithm. For example, inference in a three-layer
network (with 200x200 input images) using weight-
sharing but without max-pooling was about 10 times
slower. Without weight-sharing, it was more than 100
times slower.

In work that was contemporary to and done indepen-
dently of ours, Desjardins and Bengio (2008) also ap-
plied convolutional weight-sharing to RBMs and ex-
perimented on small image patches. Our work, how-
ever, develops more sophisticated elements such as
probabilistic max-pooling to make the algorithm more
scalable.

4. Experimental results

4.1. Learning hierarchical representations
from natural images

We first tested our model’s ability to learn hierarchi-
cal representations of natural images. Specifically, we
trained a CDBN with two hidden layers from the Ky-
oto natural image dataset.3 The first layer consisted
of 24 groups (or “bases”)4 of 10x10 pixel filters, while
the second layer consisted of 100 bases, each one 10x10
as well.5 As shown in Figure 2 (top), the learned first
layer bases are oriented, localized edge filters; this re-
sult is consistent with much prior work (Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Ranzato et al.,
2006). We note that the sparsity regularization dur-
ing training was necessary for learning these oriented
edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges.

The learned second layer bases are shown in Fig-
ure 2 (bottom), and many of them empirically re-
sponded selectively to contours, corners, angles, and
surface boundaries in the images. This result is qual-
itatively consistent with previous work (Ito & Ko-
matsu, 2004; Lee et al., 2008).

4.2. Self-taught learning for object recognition

Raina et al. (2007) showed that large unlabeled data
can help in supervised learning tasks, even when the

3http://www.cnbc.cmu.edu/cplab/data kyoto.html
4We will call one hidden group’s weights a “basis.”
5Since the images were real-valued, we used Gaussian

visible units for the first-layer CRBM. The pooling ratio C
for each layer was 2, so the second-layer bases cover roughly
twice as large an area as the first-layer ones.

Figure 2. The first layer bases (top) and the second layer
bases (bottom) learned from natural images. Each second
layer basis (filter) was visualized as a weighted linear com-
bination of the first layer bases.

unlabeled data do not share the same class labels, or
the same generative distribution, as the labeled data.
This framework, where generic unlabeled data improve
performance on a supervised learning task, is known
as self-taught learning. In their experiments, they used
sparse coding to train a single-layer representation,
and then used the learned representation to construct
features for supervised learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101
object classification task.6 The results are shown in
Table 1. First, we observe that combining the first
and second layers significantly improves the classifica-
tion accuracy relative to the first layer alone. Overall,
we achieve 57.7% test accuracy using 15 training im-
ages per class, and 65.4% test accuracy using 30 train-
ing images per class. Our result is competitive with
state-of-the-art results using highly-specialized single
features, such as SIFT, geometric blur, and shape-
context (Lazebnik et al., 2006; Berg et al., 2005; Zhang
et al., 2006).7 Recall that the CDBN was trained en-

6Details: Given an image from the Caltech-101
dataset (Fei-Fei et al., 2004), we scaled the image so that
its longer side was 150 pixels, and computed the activations
of the first and second (pooling) layers of our CDBN. We
repeated this procedure after reducing the input image by
half and concatenated all the activations to construct fea-
tures. We used an SVM with a spatial pyramid matching
kernel for classification, and the parameters of the SVM
were cross-validated. We randomly selected 15/30 training
set and 15/30 test set images respectively, and normal-
ized the result such that classification accuracy for each
class was equally weighted (following the standard proto-
col). We report results averaged over 10 random trials.

7Varma and Ray (2007) reported better performance
than ours (87.82% for 15 training images/class), but they
combined many state-of-the-art features (or kernels) to im-
prove the performance. In another approach, Yu et al.
(2009) used kernel regularization using a (previously pub-
lished) state-of-the-art kernel matrix to improve the per-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset

Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference

Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset

Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference

Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

5 / 64

Representation learning: Natural Language Processing [Voita et al., 2019]

6 / 64

The training loop

7 / 64

The big picture

Data split and usage
▶ Training set: to learn the parameters of the network
▶ Development (or dev or validation) set: to monitor the network during training
▶ Test set: to evaluate our model at the end

Generally you don’t have to split the data yourself: there exists standard splits to allow
benchmarking.

Training loop
1. Update the parameters to minimize the loss on the training set
2. Evaluate the prediction accuracy on the dev set
3. If not satisfied, go back to 1
4. Evaluate the prediction accuracy on the test set with the best parameters on dev

8 / 64

The big picture

Data split and usage
▶ Training set: to learn the parameters of the network
▶ Development (or dev or validation) set: to monitor the network during training
▶ Test set: to evaluate our model at the end

Generally you don’t have to split the data yourself: there exists standard splits to allow
benchmarking.

Training loop
1. Update the parameters to minimize the loss on the training set
2. Evaluate the prediction accuracy on the dev set
3. If not satisfied, go back to 1
4. Evaluate the prediction accuracy on the test set with the best parameters on dev

8 / 64

Pseudo-code

function Train(f , θ, T , D)

bestdev = −∞
for epoch = 1 to E do

Shuffle T
for x , y ∈ T do

loss = L(f (x ; θ), y)
θ = θ − ϵ∇loss

devacc =Evaluate(f , D)
if devacc > bestdev then

θ̂ = θ
bestdev = devacc

return θ̂

function Evaluate(f , D)
n = 0
for x , y ∈ D do

ŷ = arg maxy f (x ; θ)y
if ŷ = y then

n = n + 1
return n/|D|

9 / 64

Pseudo-code

function Train(f , θ, T , D)
bestdev = −∞
for epoch = 1 to E do

Shuffle T
for x , y ∈ T do

loss = L(f (x ; θ), y)
θ = θ − ϵ∇loss

devacc =Evaluate(f , D)
if devacc > bestdev then

θ̂ = θ
bestdev = devacc

return θ̂

function Evaluate(f , D)
n = 0
for x , y ∈ D do

ŷ = arg maxy f (x ; θ)y
if ŷ = y then

n = n + 1
return n/|D|

9 / 64

Pseudo-code

function Train(f , θ, T , D)
bestdev = −∞
for epoch = 1 to E do

Shuffle T
for x , y ∈ T do

loss = L(f (x ; θ), y)
θ = θ − ϵ∇loss

devacc =Evaluate(f , D)
if devacc > bestdev then

θ̂ = θ
bestdev = devacc

return θ̂

function Evaluate(f , D)
n = 0
for x , y ∈ D do

ŷ = arg maxy f (x ; θ)y
if ŷ = y then

n = n + 1
return n/|D|

9 / 64

Pseudo-code

function Train(f , θ, T , D)
bestdev = −∞
for epoch = 1 to E do

Shuffle T
for x , y ∈ T do

loss = L(f (x ; θ), y)
θ = θ − ϵ∇loss

devacc =Evaluate(f , D)
if devacc > bestdev then

θ̂ = θ
bestdev = devacc

return θ̂

function Evaluate(f , D)
n = 0
for x , y ∈ D do

ŷ = arg maxy f (x ; θ)y
if ŷ = y then

n = n + 1
return n/|D|

9 / 64

Further details
Sampling without replacement
▶ shuffle the training set
▶ loop over the new order

Experimentally it works better than "true" sampling and it seems to also have good
theoretical properties [Nagaraj et al., 2019]

Verbosity
At each epoch, it is useful to display:
▶ mean loss
▶ accuracy on training data
▶ accuracy on dev data
▶ timing information
▶ (sometimes) evaluate on dev several times by epoch

10 / 64

Step-size
θ(t+1) = θ(t) − ϵ(t)∇loss ⇒ How to choose the step size ϵ(t+1)?

Convex optimization
▶ Nonsummable diminishing step size:

∑∞
t=1 ϵ(t) = ∞ and limt→∞ ϵ(t) = 0

▶ Backtracking/exact line search

Simple neural network heuristic
1. Start with a small value, e.g. ϵ = 0.01
2. If dev accuracy did not improve during the last N epochs:

decay the learning rate by a small value α, e.g. ϵ = α ∗ ϵ with α = 0.1

Step-size annealing
▶ Step decay: multiple ϵ by α ∈ [0, 1] every N epochs
▶ Exponential decay: ϵ(t) = ϵ(0) exp(−α · t)
▶ 1/t decay: ϵ(t) = ϵ(0)

1+α·t

11 / 64

Step-size
θ(t+1) = θ(t) − ϵ(t)∇loss ⇒ How to choose the step size ϵ(t+1)?

Convex optimization
▶ Nonsummable diminishing step size:

∑∞
t=1 ϵ(t) = ∞ and limt→∞ ϵ(t) = 0

▶ Backtracking/exact line search

Simple neural network heuristic
1. Start with a small value, e.g. ϵ = 0.01
2. If dev accuracy did not improve during the last N epochs:

decay the learning rate by a small value α, e.g. ϵ = α ∗ ϵ with α = 0.1

Step-size annealing
▶ Step decay: multiple ϵ by α ∈ [0, 1] every N epochs
▶ Exponential decay: ϵ(t) = ϵ(0) exp(−α · t)
▶ 1/t decay: ϵ(t) = ϵ(0)

1+α·t

11 / 64

Step-size
θ(t+1) = θ(t) − ϵ(t)∇loss ⇒ How to choose the step size ϵ(t+1)?

Convex optimization
▶ Nonsummable diminishing step size:

∑∞
t=1 ϵ(t) = ∞ and limt→∞ ϵ(t) = 0

▶ Backtracking/exact line search

Simple neural network heuristic
1. Start with a small value, e.g. ϵ = 0.01
2. If dev accuracy did not improve during the last N epochs:

decay the learning rate by a small value α, e.g. ϵ = α ∗ ϵ with α = 0.1

Step-size annealing
▶ Step decay: multiple ϵ by α ∈ [0, 1] every N epochs
▶ Exponential decay: ϵ(t) = ϵ(0) exp(−α · t)
▶ 1/t decay: ϵ(t) = ϵ(0)

1+α·t

11 / 64

Step-size
θ(t+1) = θ(t) − ϵ(t)∇loss ⇒ How to choose the step size ϵ(t+1)?

Convex optimization
▶ Nonsummable diminishing step size:

∑∞
t=1 ϵ(t) = ∞ and limt→∞ ϵ(t) = 0

▶ Backtracking/exact line search

Simple neural network heuristic
1. Start with a small value, e.g. ϵ = 0.01
2. If dev accuracy did not improve during the last N epochs:

decay the learning rate by a small value α, e.g. ϵ = α ∗ ϵ with α = 0.1

Step-size annealing
▶ Step decay: multiple ϵ by α ∈ [0, 1] every N epochs
▶ Exponential decay: ϵ(t) = ϵ(0) exp(−α · t)
▶ 1/t decay: ϵ(t) = ϵ(0)

1+α·t
11 / 64

Backpropagation

12 / 64

Scalar input
Derivative
Let f : R → R be a function and x , y ∈ R be variables such that:

y = f (x).

For a given x , how does an infinitesimal change of x impact y?

dy
dx = f ′(x) = lim

ϵ→0

f (x + ϵ) − f (x)
ϵ

Linear approximation
Let f̃ : R → R be function parameterized by a ∈ R defined as follows:

f̃ (x ; a) = f (a) + f ′(a) · (x − a)

Then, f̃ (x ; a) is an approximation of f at a.

13 / 64

Scalar input
Derivative
Let f : R → R be a function and x , y ∈ R be variables such that:

y = f (x).

For a given x , how does an infinitesimal change of x impact y?

dy
dx = f ′(x) = lim

ϵ→0

f (x + ϵ) − f (x)
ϵ

Linear approximation
Let f̃ : R → R be function parameterized by a ∈ R defined as follows:

f̃ (x ; a) = f (a) + f ′(a) · (x − a)

Then, f̃ (x ; a) is an approximation of f at a.

13 / 64

Scalar input
Derivative
Let f : R → R be a function and x , y ∈ R be variables such that:

y = f (x).

For a given x , how does an infinitesimal change of x impact y?

dy
dx = f ′(x) = lim

ϵ→0

f (x + ϵ) − f (x)
ϵ

Linear approximation
Let f̃ : R → R be function parameterized by a ∈ R defined as follows:

f̃ (x ; a) = f (a) + f ′(a) · (x − a)

Then, f̃ (x ; a) is an approximation of f at a.
13 / 64

Scalar input

Example
f (x) = x2 + 2
f ′(x) = 2x

f̃ (x ; a) = f (a) + f ′(a) · (x − a)
= a2 + 2 + 2a(x − a)
= 2ax + 2 − a2

Intuition: the sign of f ′(a) gives the slope
of the approximation, we can use this
information to move closer to the minimum
of f (x).

14 / 64

Scalar input

Example
f (x) = x2 + 2
f ′(x) = 2x

f̃ (x ; a) = f (a) + f ′(a) · (x − a)
= a2 + 2 + 2a(x − a)
= 2ax + 2 − a2

Intuition: the sign of f ′(a) gives the slope
of the approximation, we can use this
information to move closer to the minimum
of f (x).

−10 −5 0 5 10

−100

0

100

▶ a = −6
▶ Black: f (x)
▶ Red: f̃ (x ; a = −6)

14 / 64

Scalar input

Example
f (x) = x2 + 2
f ′(x) = 2x

f̃ (x ; a) = f (a) + f ′(a) · (x − a)
= a2 + 2 + 2a(x − a)
= 2ax + 2 − a2

Intuition: the sign of f ′(a) gives the slope
of the approximation, we can use this
information to move closer to the minimum
of f (x).

−10 −5 0 5 10

−50
0

50
100

▶ a = 3
▶ Black: f (a)
▶ Red: f̃ (x ; a = 3)

14 / 64

Scalar input

Chain rule
Let f : R → R and g : R → R be two functions and x , y , z be variables such that:

z = f (x),
y = g(z) i.e. y = g(f (x)) = g ◦ f (x).

For a given x , how does an infinitesimal change of x impact y?

dy
dx = dy

dz · dz
dx

15 / 64

Scalar input

Chain rule
Let f : R → R and g : R → R be two functions and x , y , z be variables such that:

z = f (x),
y = g(z) i.e. y = g(f (x)) = g ◦ f (x).

For a given x , how does an infinitesimal change of x impact y?

dy
dx = dy

dz · dz
dx

15 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2

= 4x2 + 4x + 1
f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1

dz
dx = 2

y = z2 = f (x)

dy
dz = 2z

dy
dx = dy

dz · dz
dx

= 2z ∗ 2

= 4(2x + 1)

= 8x + 4 = f ′(x)

16 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2 = 4x2 + 4x + 1

f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1

dz
dx = 2

y = z2 = f (x)

dy
dz = 2z

dy
dx = dy

dz · dz
dx

= 2z ∗ 2

= 4(2x + 1)

= 8x + 4 = f ′(x)

16 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2 = 4x2 + 4x + 1
f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1

dz
dx = 2

y = z2 = f (x)

dy
dz = 2z

dy
dx = dy

dz · dz
dx

= 2z ∗ 2

= 4(2x + 1)

= 8x + 4 = f ′(x)

16 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2 = 4x2 + 4x + 1
f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1

dz
dx = 2

y = z2 = f (x)

dy
dz = 2z

dy
dx = dy

dz · dz
dx

= 2z ∗ 2

= 4(2x + 1)

= 8x + 4 = f ′(x)

16 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2 = 4x2 + 4x + 1
f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1 dz
dx = 2

y = z2 = f (x) dy
dz = 2z

dy
dx = dy

dz · dz
dx

= 2z ∗ 2

= 4(2x + 1)

= 8x + 4 = f ′(x)

16 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2 = 4x2 + 4x + 1
f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1 dz
dx = 2

y = z2 = f (x) dy
dz = 2z

dy
dx = dy

dz · dz
dx

= 2z ∗ 2

= 4(2x + 1)

= 8x + 4 = f ′(x)

16 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2 = 4x2 + 4x + 1
f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1 dz
dx = 2

y = z2 = f (x) dy
dz = 2z

dy
dx = dy

dz · dz
dx = 2z ∗ 2

= 4(2x + 1)

= 8x + 4 = f ′(x)

16 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2 = 4x2 + 4x + 1
f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1 dz
dx = 2

y = z2 = f (x) dy
dz = 2z

dy
dx = dy

dz · dz
dx = 2z ∗ 2 = 4(2x + 1)

= 8x + 4 = f ′(x)

16 / 64

Scalar input

Example: explicit differentiation

f (x) = (2x + 1)2 = 4x2 + 4x + 1
f ′(x) = 8x + 4

Example: differentiation using the chain rule

z = 2x + 1 dz
dx = 2

y = z2 = f (x) dy
dz = 2z

dy
dx = dy

dz · dz
dx = 2z ∗ 2 = 4(2x + 1) = 8x + 4 = f ′(x)

16 / 64

Vector input
Let f : Rm → R be a function and x ∈ Rm, y ∈ R be variables such that:

y = f (x).

Partial derivative
For a given x, how does an infinitesimal
change of xi impact y?

∂y
∂xi

i.e. each input xj , j ̸= i is considered as a
constant.

Gradient
For a given x, how does an infinitesimal
change of x impact y?

∇xy =


∂y
∂x1

∂y
∂x2

...



17 / 64

Vector input
Let f : Rm → R be a function and x ∈ Rm, y ∈ R be variables such that:

y = f (x).

Partial derivative
For a given x, how does an infinitesimal
change of xi impact y?

∂y
∂xi

i.e. each input xj , j ̸= i is considered as a
constant.

Gradient
For a given x, how does an infinitesimal
change of x impact y?

∇xy =


∂y
∂x1

∂y
∂x2

...



17 / 64

Vector input
Let f : Rm → R be a function and x ∈ Rm, y ∈ R be variables such that:

y = f (x).

Partial derivative
For a given x, how does an infinitesimal
change of xi impact y?

∂y
∂xi

i.e. each input xj , j ̸= i is considered as a
constant.

Gradient
For a given x, how does an infinitesimal
change of x impact y?

∇xy =


∂y
∂x1

∂y
∂x2

...


17 / 64

Vector input

Chain rule
Let f : Rm → Rn and g : Rn → R be two functions and xm, zn, y be variables such
that:

z = f (x),
y = g(z)

For a given xi , how does an infinitesimal change of xi impact y?

∂y
∂xi

=
∑

j

∂y
∂zj

· ∂zj
∂xi

18 / 64

Vector input

Chain rule
Let f : Rm → Rn and g : Rn → R be two functions and xm, zn, y be variables such
that:

z = f (x),
y = g(z)

For a given xi , how does an infinitesimal change of xi impact y?

∂y
∂xi

=
∑

j

∂y
∂zj

· ∂zj
∂xi

18 / 64

Vector example

z = W x + b or zj =
∑

i
Wj,ixi + bj

∂zj
xi

= Wj,i

y =
∑

j
zj

∂y
zj

= 1

∂y
∂xi

=
∑

j

∂y
∂zj

· ∂zj
∂xi

=
∑

j
1 ∗ Wj,i

19 / 64

Vector example

z = W x + b or zj =
∑

i
Wj,ixi + bj

∂zj
xi

= Wj,i

y =
∑

j
zj

∂y
zj

= 1

∂y
∂xi

=
∑

j

∂y
∂zj

· ∂zj
∂xi

=
∑

j
1 ∗ Wj,i

19 / 64

Vector example

z = W x + b or zj =
∑

i
Wj,ixi + bj

∂zj
xi

= Wj,i

y =
∑

j
zj

∂y
zj

= 1

∂y
∂xi

=
∑

j

∂y
∂zj

· ∂zj
∂xi

=
∑

j
1 ∗ Wj,i

19 / 64

Vector example

z(1) = ...x...

z(2) = ...z(1)...

y = ...z(2)...

∂y
∂xi

=
∑

k

∂y
∂z(2)

k
·

∂z(2)
k

∂xi
=

∑
k

∂y
∂z(2)

k
·
∑

j

∂z(2)
k

∂z(1)
j

·
∂z(1)

j
∂xi

⇒ It is starting to get annoying!

20 / 64

Vector example

z(1) = ...x...

z(2) = ...z(1)...

y = ...z(2)...

∂y
∂xi

=
∑

k

∂y
∂z(2)

k
·

∂z(2)
k

∂xi

=
∑

k

∂y
∂z(2)

k
·
∑

j

∂z(2)
k

∂z(1)
j

·
∂z(1)

j
∂xi

⇒ It is starting to get annoying!

20 / 64

Vector example

z(1) = ...x...

z(2) = ...z(1)...

y = ...z(2)...

∂y
∂xi

=
∑

k

∂y
∂z(2)

k
·

∂z(2)
k

∂xi
=

∑
k

∂y
∂z(2)

k
·
∑

j

∂z(2)
k

∂z(1)
j

·
∂z(1)

j
∂xi

⇒ It is starting to get annoying!

20 / 64

Jacobian
Let f : Rm → Rn be a function and x ∈ Rm, y ∈ Rn be variables such that:

y = f (x).

Gradient
For a given x, how does an infinitesimal
change of x impact yj?

∇xyj =


∂yj
∂x1
∂yj
∂x2

...



Jacobian
For a given x, how does an infinitesimal
change of x impact y?

Jxy =


∂y1
∂x1

∂y1
∂x2

...

∂y2
∂x1

∂y2
∂x2

...

...



21 / 64

Jacobian
Let f : Rm → Rn be a function and x ∈ Rm, y ∈ Rn be variables such that:

y = f (x).

Gradient
For a given x, how does an infinitesimal
change of x impact yj?

∇xyj =


∂yj
∂x1
∂yj
∂x2

...



Jacobian
For a given x, how does an infinitesimal
change of x impact y?

Jxy =


∂y1
∂x1

∂y1
∂x2

...

∂y2
∂x1

∂y2
∂x2

...

...



21 / 64

Jacobian
Let f : Rm → Rn be a function and x ∈ Rm, y ∈ Rn be variables such that:

y = f (x).

Gradient
For a given x, how does an infinitesimal
change of x impact yj?

∇xyj =


∂yj
∂x1
∂yj
∂x2

...



Jacobian
For a given x, how does an infinitesimal
change of x impact y?

Jxy =


∂y1
∂x1

∂y1
∂x2

...

∂y2
∂x1

∂y2
∂x2

...

...


21 / 64

Chain rule using the Jacobian notation
Let f : Rm → Rn and g : Rn → R be two functions and xm, zn, y be variables such
that:

z = f (x), y = g(z)

Partial notation

∂y
∂xi

=
∑

j

∂y
∂zj

· ∂zj
∂xi

Gradient+Jacobian notation
Let ⟨·, ·⟩ be the dot product operation:

∇xy = ⟨Jxz, ∇zy⟩

∇xy =


∂y
∂x1

∂y
∂x2

...

 ∈ Rm Jxz =


∂z1
∂x1

∂z1
∂x2

...

∂z2
∂x1

∂z2
∂x2

...

...

 ∈ Rn×m ∇zy =


∂y
∂z1

∂y
∂z2

...

 ∈ Rn

22 / 64

Chain rule using the Jacobian notation
Let f : Rm → Rn and g : Rn → R be two functions and xm, zn, y be variables such
that:

z = f (x), y = g(z)

Partial notation

∂y
∂xi

=
∑

j

∂y
∂zj

· ∂zj
∂xi

Gradient+Jacobian notation
Let ⟨·, ·⟩ be the dot product operation:

∇xy = ⟨Jxz, ∇zy⟩

∇xy =


∂y
∂x1

∂y
∂x2

...

 ∈ Rm Jxz =


∂z1
∂x1

∂z1
∂x2

...

∂z2
∂x1

∂z2
∂x2

...

...

 ∈ Rn×m ∇zy =


∂y
∂z1

∂y
∂z2

...

 ∈ Rn

22 / 64

Chain rule using the Jacobian notation
Let f : Rm → Rn and g : Rn → R be two functions and xm, zn, y be variables such
that:

z = f (x), y = g(z)

Partial notation

∂y
∂xi

=
∑

j

∂y
∂zj

· ∂zj
∂xi

Gradient+Jacobian notation
Let ⟨·, ·⟩ be the dot product operation:

∇xy = ⟨Jxz, ∇zy⟩

∇xy =


∂y
∂x1

∂y
∂x2

...

 ∈ Rm Jxz =


∂z1
∂x1

∂z1
∂x2

...

∂z2
∂x1

∂z2
∂x2

...

...

 ∈ Rn×m ∇zy =


∂y
∂z1

∂y
∂z2

...

 ∈ Rn

22 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1))

∇θ(1)y= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓ ↑

z(2)= f (2)(z(1); θ(2)) ∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩ ∇θ(2)y= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓ ↑

z(3)= f (3)(z(2); θ(3)) ∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩ ∇θ(3)y= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓ ↑

z(4)= f (4)(z(3); θ(4)) ∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩ ∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓ ↑

y = f (5)(z(4); θ(5)) ∇z(4)y ∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1))

∇θ(1)y= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩ ∇θ(2)y= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓ ↑

z(3)= f (3)(z(2); θ(3)) ∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩ ∇θ(3)y= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓ ↑

z(4)= f (4)(z(3); θ(4)) ∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩ ∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓ ↑

y = f (5)(z(4); θ(5)) ∇z(4)y ∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1))

∇θ(1)y= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩ ∇θ(2)y= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓

↑

z(3)= f (3)(z(2); θ(3))

∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩ ∇θ(3)y= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓ ↑

z(4)= f (4)(z(3); θ(4)) ∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩ ∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓ ↑

y = f (5)(z(4); θ(5)) ∇z(4)y ∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1))

∇θ(1)y= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩ ∇θ(2)y= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓

↑

z(3)= f (3)(z(2); θ(3))

∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩ ∇θ(3)y= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓

↑

z(4)= f (4)(z(3); θ(4))

∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩ ∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓ ↑

y = f (5)(z(4); θ(5)) ∇z(4)y ∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1))

∇θ(1)y= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩ ∇θ(2)y= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓

↑

z(3)= f (3)(z(2); θ(3))

∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩ ∇θ(3)y= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓

↑

z(4)= f (4)(z(3); θ(4))

∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩ ∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓

↑

y = f (5)(z(4); θ(5))

∇z(4)y ∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1)) ∇θ(1)y

= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩

∇θ(2)y

= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓

↑

z(3)= f (3)(z(2); θ(3))

∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩

∇θ(3)y

= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓

↑

z(4)= f (4)(z(3); θ(4))

∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩

∇θ(4)y

= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓

↑

y = f (5)(z(4); θ(5))

∇z(4)y

∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1)) ∇θ(1)y

= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩

∇θ(2)y

= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓

↑

z(3)= f (3)(z(2); θ(3))

∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩

∇θ(3)y

= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓

↑

z(4)= f (4)(z(3); θ(4))

∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩

∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓

↑

y = f (5)(z(4); θ(5))

∇z(4)y

∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1)) ∇θ(1)y

= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩

∇θ(2)y

= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓

↑

z(3)= f (3)(z(2); θ(3))

∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩

∇θ(3)y

= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓

↑

z(4)= f (4)(z(3); θ(4))

∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩

∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓ ↑

y = f (5)(z(4); θ(5)) ∇z(4)y ∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1)) ∇θ(1)y

= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩

∇θ(2)y

= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓

↑

z(3)= f (3)(z(2); θ(3))

∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩

∇θ(3)y= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓

↑

z(4)= f (4)(z(3); θ(4))

∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩

∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓ ↑

y = f (5)(z(4); θ(5)) ∇z(4)y ∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1)) ∇θ(1)y

= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓

↑

z(2)= f (2)(z(1); θ(2))

∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩

∇θ(2)y

= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓

↑

z(3)= f (3)(z(2); θ(3))

∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩

∇θ(3)y= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓ ↑

z(4)= f (4)(z(3); θ(4)) ∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩ ∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓ ↑

y = f (5)(z(4); θ(5)) ∇z(4)y ∇θ(5)y

23 / 64

Forward and backward passes
Forward pass Backward pass

z(1)= f (1)(x ; θ(1)) ∇θ(1)y= ⟨Jθ(1)z(1), ∇z(1)y⟩

↓ ↑

z(2)= f (2)(z(1); θ(2)) ∇z(1)y= ⟨Jz(1)z(2), ∇z(2)y⟩ ∇θ(2)y= ⟨Jθ(2)z(2), ∇z(2)y⟩

↓ ↑

z(3)= f (3)(z(2); θ(3)) ∇z(2)y= ⟨Jz(2)z(3), ∇z(3)y⟩ ∇θ(3)y= ⟨Jθ(3)z(3), ∇z(3)y⟩

↓ ↑

z(4)= f (4)(z(3); θ(4)) ∇z(3)y= ⟨Jz(3)z(4), ∇z(4)y⟩ ∇θ(4)y= ⟨Jθ(4)z(4), ∇z(4)y⟩

↓ ↑

y = f (5)(z(4); θ(5)) ∇z(4)y ∇θ(5)y

23 / 64

Computation Graph (CG) 1/2

x

× +

W (1) b(1)

σ z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL

∇...∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...

∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...

∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...∇z(2)L

∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 1/2

x × +

W (1) b(1)

σ

z(1)

z(1) = σ
(
W (1)x + b(1)

)

× +

W (2) b(2)

z(2)

z(2) = W (2)x + b(2)

Softmax log − pick

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

∇LL∇...∇...∇...∇z(2)L∇...∇z(1)L

∇b(1)L

24 / 64

Computation Graph (CG) 2/2

x Linear

W (1), b(1)

σ

z(1) = σ
(
W (1)x + b(1)

)

Linear

W (2), b(2)

z(2) = W (2)x + b(2)

NLL

y

L

L = − log exp(z(2)
y)∑

y′ exp(z(2)
y′)

25 / 64

Computation Graph (CG) implementation

CG construction / Eager forward pass
The computation graph is built in topological order (∼order execution of operations):
▶ x, z(1), z(2), ..., L: Expression nodes
▶ W (1), b(1), ...: Parameter nodes

Expression node
▶ Values
▶ Gradient
▶ Backward operation
▶ Backpointer(s) to antecedents

The backward operation and backpointer(s) are
null for input operations

Parameter node
▶ Persistent values
▶ Gradient

26 / 64

Eager forward pass example
Non-linear activation function:

z ′ = relu(z)

function relu(z)
▷ Create node
z ′ = ExpressionNode()
▷ Compute forward value

z ′.value =

max(0, z1)
max(0, z2)

...


▷ Set backward operation
z ′.d = d_relu
▷ Set backpointers
z ′.backptrs = [z]

return z ′

Projection operation z = Wx + b:

z = Linear(x, W , b)

function Linear(x, W , b)
▷ Create node
z = ExpressionNode()
▷ Compute forward value
z.value = Wx + b
▷ Set backward operation
z.d = d_linear
▷ Set backpointers
z.backptrs = [W , b]

return z

27 / 64

Eager forward pass example
Non-linear activation function:

z ′ = relu(z)

function relu(z)
▷ Create node
z ′ = ExpressionNode()
▷ Compute forward value

z ′.value =

max(0, z1)
max(0, z2)

...


▷ Set backward operation
z ′.d = d_relu
▷ Set backpointers
z ′.backptrs = [z]

return z ′

Projection operation z = Wx + b:

z = Linear(x, W , b)

function Linear(x, W , b)
▷ Create node
z = ExpressionNode()
▷ Compute forward value
z.value = Wx + b
▷ Set backward operation
z.d = d_linear
▷ Set backpointers
z.backptrs = [W , b]

return z

27 / 64

Eager forward pass example
Non-linear activation function:

z ′ = relu(z)

function relu(z)
▷ Create node
z ′ = ExpressionNode()
▷ Compute forward value

z ′.value =

max(0, z1)
max(0, z2)

...


▷ Set backward operation
z ′.d = d_relu
▷ Set backpointers
z ′.backptrs = [z]

return z ′

Projection operation z = Wx + b:

z = Linear(x, W , b)

function Linear(x, W , b)
▷ Create node
z = ExpressionNode()
▷ Compute forward value
z.value = Wx + b
▷ Set backward operation
z.d = d_linear
▷ Set backpointers
z.backptrs = [W , b]

return z

27 / 64

Eager forward pass example
Non-linear activation function:

z ′ = relu(z)

function relu(z)
▷ Create node
z ′ = ExpressionNode()
▷ Compute forward value

z ′.value =

max(0, z1)
max(0, z2)

...


▷ Set backward operation
z ′.d = d_relu
▷ Set backpointers
z ′.backptrs = [z]

return z ′

Projection operation z = Wx + b:

z = Linear(x, W , b)

function Linear(x, W , b)
▷ Create node
z = ExpressionNode()
▷ Compute forward value
z.value = Wx + b
▷ Set backward operation
z.d = d_linear
▷ Set backpointers
z.backptrs = [W , b]

return z

27 / 64

Backward pass

Execution of the backward pass
Nodes are visited in reverse topological order (reverse order of creation):
▶ The gradient of the loss (last created node) is set to 1
▶ For each node, we call it’s derivative function
▶ The derivative functions will backpropagate gradient to antecedents

Gradient must be accumulated (expressions can be used several times)

function Backward(nodes, L)
L.grad = 1
for n ∈ reversed(nodes) do

▷ Call the derivative functions
n.d(n.backptrs)

28 / 64

Backward pass

Execution of the backward pass
Nodes are visited in reverse topological order (reverse order of creation):
▶ The gradient of the loss (last created node) is set to 1
▶ For each node, we call it’s derivative function
▶ The derivative functions will backpropagate gradient to antecedents

Gradient must be accumulated (expressions can be used several times)

function Backward(nodes, L)
L.grad = 1
for n ∈ reversed(nodes) do

▷ Call the derivative functions
n.d(n.backptrs)

28 / 64

Backward pass example: relu 1/2

relu(x) =
{

0 if ≤ 0
x otherwise

∂

∂x relu(x) =


0 if x < 0
1 if x > 0
undefined otherwise, =0

∇zL = ⟨Jzz ′, ∇z′L⟩

Jzz ′ =


∂z ′

1
∂z1

∂z ′
1

∂z2
...

∂z ′
2

∂z1

∂z ′
2

∂z2
...

...



∂z ′
i

∂zj
=

{
0, if i ̸= j (piecewise function!)
∂

∂zi
f (zi), if i = j

∇zL =


∂L
∂z1
∂L
∂z2
...



∂L
∂zi

=
∑

j

∂L
∂z ′

j
·

∂z ′
j

∂zi

= ∂L
∂z ′

i
· ∂z ′

i
∂zi

(piecewise function!)

= ∂L
∂z ′

i
· 1[zi > 0]

29 / 64

Backward pass example: relu 1/2

relu(x) =
{

0 if ≤ 0
x otherwise

∂

∂x relu(x) =


0 if x < 0
1 if x > 0
undefined otherwise, =0

∇zL = ⟨Jzz ′, ∇z′L⟩

Jzz ′ =


∂z ′

1
∂z1

∂z ′
1

∂z2
...

∂z ′
2

∂z1

∂z ′
2

∂z2
...

...



∂z ′
i

∂zj
=

{
0, if i ̸= j (piecewise function!)
∂

∂zi
f (zi), if i = j

∇zL =


∂L
∂z1
∂L
∂z2
...



∂L
∂zi

=
∑

j

∂L
∂z ′

j
·

∂z ′
j

∂zi

= ∂L
∂z ′

i
· ∂z ′

i
∂zi

(piecewise function!)

= ∂L
∂z ′

i
· 1[zi > 0]

29 / 64

Backward pass example: relu 1/2

relu(x) =
{

0 if ≤ 0
x otherwise

∂

∂x relu(x) =


0 if x < 0
1 if x > 0
undefined otherwise, =0

∇zL = ⟨Jzz ′, ∇z′L⟩

Jzz ′ =


∂z ′

1
∂z1

∂z ′
1

∂z2
...

∂z ′
2

∂z1

∂z ′
2

∂z2
...

...



∂z ′
i

∂zj
=

{
0, if i ̸= j (piecewise function!)
∂

∂zi
f (zi), if i = j

∇zL =


∂L
∂z1
∂L
∂z2
...



∂L
∂zi

=
∑

j

∂L
∂z ′

j
·

∂z ′
j

∂zi

= ∂L
∂z ′

i
· ∂z ′

i
∂zi

(piecewise function!)

= ∂L
∂z ′

i
· 1[zi > 0]

29 / 64

Backward pass example: relu 1/2

relu(x) =
{

0 if ≤ 0
x otherwise

∂

∂x relu(x) =


0 if x < 0
1 if x > 0
undefined otherwise, =0

∇zL = ⟨Jzz ′, ∇z′L⟩

Jzz ′ =


∂z ′

1
∂z1

∂z ′
1

∂z2
...

∂z ′
2

∂z1

∂z ′
2

∂z2
...

...



∂z ′
i

∂zj
=

{
0, if i ̸= j (piecewise function!)
∂

∂zi
f (zi), if i = j

∇zL =


∂L
∂z1
∂L
∂z2
...



∂L
∂zi

=
∑

j

∂L
∂z ′

j
·

∂z ′
j

∂zi

= ∂L
∂z ′

i
· ∂z ′

i
∂zi

(piecewise function!)

= ∂L
∂z ′

i
· 1[zi > 0]

29 / 64

Backward pass example: relu 1/2

relu(x) =
{

0 if ≤ 0
x otherwise

∂

∂x relu(x) =


0 if x < 0
1 if x > 0
undefined otherwise, =0

∇zL = ⟨Jzz ′, ∇z′L⟩

Jzz ′ =


∂z ′

1
∂z1

∂z ′
1

∂z2
...

∂z ′
2

∂z1

∂z ′
2

∂z2
...

...



∂z ′
i

∂zj
=

{
0, if i ̸= j (piecewise function!)
∂

∂zi
f (zi), if i = j

∇zL =


∂L
∂z1
∂L
∂z2
...



∂L
∂zi

=
∑

j

∂L
∂z ′

j
·

∂z ′
j

∂zi

= ∂L
∂z ′

i
· ∂z ′

i
∂zi

(piecewise function!)

= ∂L
∂z ′

i
· 1[zi > 0]

29 / 64

Backward pass example: relu 1/2

relu(x) =
{

0 if ≤ 0
x otherwise

∂

∂x relu(x) =


0 if x < 0
1 if x > 0
undefined otherwise, =0

∇zL = ⟨Jzz ′, ∇z′L⟩

Jzz ′ =


∂z ′

1
∂z1

∂z ′
1

∂z2
...

∂z ′
2

∂z1

∂z ′
2

∂z2
...

...



∂z ′
i

∂zj
=

{
0, if i ̸= j (piecewise function!)
∂

∂zi
f (zi), if i = j

∇zL =


∂L
∂z1
∂L
∂z2
...



∂L
∂zi

=
∑

j

∂L
∂z ′

j
·

∂z ′
j

∂zi

= ∂L
∂z ′

i
· ∂z ′

i
∂zi

(piecewise function!)

= ∂L
∂z ′

i
· 1[zi > 0]

29 / 64

Backward pass example: relu 1/2

relu(x) =
{

0 if ≤ 0
x otherwise

∂

∂x relu(x) =


0 if x < 0
1 if x > 0
undefined otherwise, =0

∇zL = ⟨Jzz ′, ∇z′L⟩

Jzz ′ =


∂z ′

1
∂z1

∂z ′
1

∂z2
...

∂z ′
2

∂z1

∂z ′
2

∂z2
...

...



∂z ′
i

∂zj
=

{
0, if i ̸= j (piecewise function!)
∂

∂zi
f (zi), if i = j

∇zL =


∂L
∂z1
∂L
∂z2
...



∂L
∂zi

=
∑

j

∂L
∂z ′

j
·

∂z ′
j

∂zi

= ∂L
∂z ′

i
· ∂z ′

i
∂zi

(piecewise function!)

= ∂L
∂z ′

i
· 1[zi > 0]

29 / 64

Backward pass example: relu 1/2

relu(x) =
{

0 if ≤ 0
x otherwise

∂

∂x relu(x) =


0 if x < 0
1 if x > 0
undefined otherwise, =0

∇zL = ⟨Jzz ′, ∇z′L⟩

Jzz ′ =


∂z ′

1
∂z1

∂z ′
1

∂z2
...

∂z ′
2

∂z1

∂z ′
2

∂z2
...

...



∂z ′
i

∂zj
=

{
0, if i ̸= j (piecewise function!)
∂

∂zi
f (zi), if i = j

∇zL =


∂L
∂z1
∂L
∂z2
...



∂L
∂zi

=
∑

j

∂L
∂z ′

j
·

∂z ′
j

∂zi

= ∂L
∂z ′

i
· ∂z ′

i
∂zi

(piecewise function!)

= ∂L
∂z ′

i
· 1[zi > 0]

29 / 64

Backward pass example: relu 2/2

relu(x) =
{

0 if ≤ 0
x otherwise

relu ′(x) =


0 if x < 0
1 if x > 0
undefined otherwise

function relu(z)
z ′ = ExpressionNode()

z ′.value =

max(0, z1)
max(0, z2)

...


z ′.d = d_relu
z ′.backptrs = [z]

return z ′

∂L
∂zi

= ∂L
∂z ′

i
· 1[zi > 0]

function d_relu(z ′, [z])
for i ∈ {1...n} do

▷ If the value is positive,
▷ we copy the gradient
if zi > 0 then

z.gradi = z.gradi + z ′.gradi

30 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj =
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj =
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj

=
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj =
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj =
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj =
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj =
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj =
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 1/2

z = Wx + b ⇔ zj =
∑

k
Wj,kxk + bj

∂L
∂bi

=
∑

j

∂L
∂zj

· ∂zj
∂bi

=
∑

j

∂L
∂zj

· 1[j = i]

= ∂L
∂zi

(copy incoming gradient!)

∂zj
∂bi

= ∂

∂bi

∑
k

Wj,kxk + bj =
{

1, if i = j
0, otherwise

∂L
∂Wi ,l

=
∑

j

∂L
∂zj

· ∂zj
Wi ,l

=
∑

j

∂L
∂zj

· xl · 1[i = j]

∇W L = (∇zL)(x⊤) (outer product)

∂zj
∂Wi ,l

= ∂

∂Wi ,l

∑
k

Wj,kxk + bj

=
{

xl , if i = j
0, otherwise

31 / 64

Backward pass example: linear projection 2/2

function Linear(x, W , b)
z = ExpressionNode()
z.value = Wx + b
z.d = d_linear
z.backptrs = [W , b]

return z

∂L
∂bi

= ∂L
∂zi

∇W L = (∇zL)(x⊤)

function d_Linear(z, [x, W , b])
b.grad = b.grad + z.grad
W .grad = W .grad + z.grad @ x⊤

x.grad = x.grad + ...

Missing gradient?
Why don’t we backpropagate to x?!
We do not need it for today’s lab exercises, you will see how to do that next week.

32 / 64

Backward pass example: linear projection 2/2

function Linear(x, W , b)
z = ExpressionNode()
z.value = Wx + b
z.d = d_linear
z.backptrs = [W , b]

return z

∂L
∂bi

= ∂L
∂zi

∇W L = (∇zL)(x⊤)

function d_Linear(z, [x, W , b])
b.grad = b.grad + z.grad
W .grad = W .grad + z.grad @ x⊤

x.grad = x.grad + ...

Missing gradient?
Why don’t we backpropagate to x?!
We do not need it for today’s lab exercises, you will see how to do that next week.

32 / 64

Summary
Computation graph
▶ Forward pass: compute values
▶ Backward pass: compute gradient for each parameter
▶ Gradient initialization: you should be careful with that because gradient is accumulated

First lab exercises
▶ Simple linear model: don’t build a computation graph,

explicitly apply forward and backward operations
▶ d_Linear: return a tuple with gradient of W and b instead of writing into a node
▶ Do not need to worry about gradient initialization / accumulation :-)

Pytorch
In Pytorch, expression nodes used to be of type Variable.
Nowadays, autodiff is directly implemented in the Tensor class.

33 / 64

Vanishing gradient, activation functions and initialization

34 / 64

Experimental observations
The MNIST database

Comparison of different depth for feed-forward architecture

x(1) x(2) x(3) x(L)

W (1)
y (1)

W (2)
y (2) y (L−1)

W (L)
y (L): output

▶ Hidden layers have a sigmoid activation function.
▶ The output layer is softmax.

35 / 64

Experimental observations: http://neuralnetworksanddeeplearning.com/chap5.html
▶ Without hidden layer: ≈ 88% accuracy
▶ 1 hidden layer (30): ≈ 96.5% accuracy
▶ 2 hidden layer (30): ≈ 96.9% accuracy
▶ 3 hidden layer (30): ≈ 96.5% accuracy
▶ 4 hidden layer (30): ≈ 96.5% accuracy

36 / 64

http://neuralnetworksanddeeplearning.com/chap5.html

Experimental observations: http://neuralnetworksanddeeplearning.com/chap5.html
▶ Without hidden layer: ≈ 88% accuracy
▶ 1 hidden layer (30): ≈ 96.5% accuracy
▶ 2 hidden layer (30): ≈ 96.9% accuracy
▶ 3 hidden layer (30): ≈ 96.5% accuracy
▶ 4 hidden layer (30): ≈ 96.5% accuracy

36 / 64

http://neuralnetworksanddeeplearning.com/chap5.html

Intuitive explanation 1/2

Let consider the simplest deep neural network, with just a single neuron in each layer.

wi , bi are resp. the weight and bias of neuron i and C some loss function.

Compute the gradient of C w.r.t the bias b1

∂C
∂b1

= ∂C
∂y4

× ∂y4
∂a4

× ∂a4
∂y3

× ∂y3
∂a3

× ∂a3
∂y2

× ∂y2
∂a2

× ∂a2
∂y1

× ∂y1
∂a1

× ∂a1
∂b1

(1)

= ∂C
∂y4

× σ′(a4) × w4 × σ′(a3) × w3 × σ′(a2) × w2 × σ′(a1) (2)

37 / 64

Intuitive explanation 1/2

Let consider the simplest deep neural network, with just a single neuron in each layer.

wi , bi are resp. the weight and bias of neuron i and C some loss function.

Compute the gradient of C w.r.t the bias b1

∂C
∂b1

= ∂C
∂y4

× ∂y4
∂a4

× ∂a4
∂y3

× ∂y3
∂a3

× ∂a3
∂y2

× ∂y2
∂a2

× ∂a2
∂y1

× ∂y1
∂a1

× ∂a1
∂b1

(1)

= ∂C
∂y4

× σ′(a4) × w4 × σ′(a3) × w3 × σ′(a2) × w2 × σ′(a1) (2)

37 / 64

Intuitive explanation 2/2
The derivative of the activation function: σ′

−10 −5 0 5 10
0

0.25

0.5

0.75

1

σ(x) = 1
1 + exp(−x)

σ′(x) = σ(x)(1 − σ(x))

Vanishing gradient
▶ if the last layer are well trained (and outputs "strong values" close to 0 or 1),
▶ early layers receive a really small incoming gradient.

In the "best case", we successive multiplications by 0.25!
38 / 64

Other activation functions

−4 −2 0 2 4
−1

−0.5

0

0.5

1

Hyperbolic tangent

tanh(x) = 1 − exp(−2x)
1 + exp(−2x) tanh′(x) = 1 − tanh(x)2

▶ Better gradient than sigmoid around 0
▶ Popular in Natural Language Processing

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

Rectified Linear Unit

relu(x) =
{

0 if ≤ 0
x otherwise

relu ′(x) =


0 if x < 0
1 if x > 0
undefined otherwise

▶ No vanishing gradient issue
▶ "Dead units" problem (i.e. bi << 0)
▶ Popular in Computer Vision (very deep networks)

39 / 64

Other activation functions

−4 −2 0 2 4
−1

−0.5

0

0.5

1

Hyperbolic tangent

tanh(x) = 1 − exp(−2x)
1 + exp(−2x) tanh′(x) = 1 − tanh(x)2

▶ Better gradient than sigmoid around 0
▶ Popular in Natural Language Processing

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

Rectified Linear Unit

relu(x) =
{

0 if ≤ 0
x otherwise

relu ′(x) =


0 if x < 0
1 if x > 0
undefined otherwise

▶ No vanishing gradient issue
▶ "Dead units" problem (i.e. bi << 0)
▶ Popular in Computer Vision (very deep networks)

39 / 64

Parameters initialization
What do we want?
▶ Values close to 0 prevent gradient vanishing

(or gradient exploding/disappearing in the case of relu)
▶ Gradient magnitude approximately similar for all layers

(to prevent that a subset of layers do all the works while others are useless)

Hyperbolic tangent
Let W ∈ Rm×n and b ∈ Rm:
▶ W ∼ U

[
−

√
6√

m+n , +
√

6√
m+n

]
▶ b = 0

Usually called Xavier or Glorot initialization
[Glorot and Bengio, 2010]

Rectified Linear Unit
Let W ∈ Rm×n and b ∈ Rm:
▶ W ∼ U

[
−

√
6√
n , +

√
6√
n

]
▶ b = 0

(or b = 0.01 to prevent dying units)
Usually called Kaiming or He initialization
[He et al., 2015]

40 / 64

Parameters initialization
What do we want?
▶ Values close to 0 prevent gradient vanishing

(or gradient exploding/disappearing in the case of relu)
▶ Gradient magnitude approximately similar for all layers

(to prevent that a subset of layers do all the works while others are useless)

Hyperbolic tangent
Let W ∈ Rm×n and b ∈ Rm:
▶ W ∼ U

[
−

√
6√

m+n , +
√

6√
m+n

]
▶ b = 0

Usually called Xavier or Glorot initialization
[Glorot and Bengio, 2010]

Rectified Linear Unit
Let W ∈ Rm×n and b ∈ Rm:
▶ W ∼ U

[
−

√
6√
n , +

√
6√
n

]
▶ b = 0

(or b = 0.01 to prevent dying units)
Usually called Kaiming or He initialization
[He et al., 2015]

40 / 64

Regularization

41 / 64

Generalization
Overparameterized neural networks
Networks where the number of parameters exceed the training dataset size.
▶ Can learn by heart the dataset,

i.e. overfit the data → does not generalize well to unseen data
▶ Are easier to optimize in practice

Monitoring the training process
▶ Loss should go down ⇒ otherwise your step-size is probably too big!
▶ Training accuracy should go up
▶ Dev accuracy should go up ⇒ otherwise the network is overfitting!

Regularization
Techniques to control parameters during learning and prevent overfitting

42 / 64

Generalization
Overparameterized neural networks
Networks where the number of parameters exceed the training dataset size.
▶ Can learn by heart the dataset,

i.e. overfit the data → does not generalize well to unseen data
▶ Are easier to optimize in practice

Monitoring the training process
▶ Loss should go down ⇒ otherwise your step-size is probably too big!
▶ Training accuracy should go up
▶ Dev accuracy should go up ⇒ otherwise the network is overfitting!

Regularization
Techniques to control parameters during learning and prevent overfitting

42 / 64

Generalization
Overparameterized neural networks
Networks where the number of parameters exceed the training dataset size.
▶ Can learn by heart the dataset,

i.e. overfit the data → does not generalize well to unseen data
▶ Are easier to optimize in practice

Monitoring the training process
▶ Loss should go down ⇒ otherwise your step-size is probably too big!
▶ Training accuracy should go up
▶ Dev accuracy should go up ⇒ otherwise the network is overfitting!

Regularization
Techniques to control parameters during learning and prevent overfitting

42 / 64

Learning with random inputs and labels 1/2 [Zhang et al., 2017]

43 / 64

Learning with random inputs and labels 2/2 [Zhang et al., 2017]

44 / 64

Regularization L2 or Gaussian prior or weight decay 1/3

θ̂ = arg min
θ

L(f (x ; θ), y) + λ

2 ||θ||2

= arg min
θ

L(f (x ; θ), y) + R(θ; λ)

Regularization term
The second term R(θ; λ) is a L2 regularization term which can be equivalently
interpreted as:
▶ a soft constraint on the magnitude of parameters
▶ a Gaussian prior on parameters: N (0, 1/λ)
▶ re-scaling the parameters after each update (weight decay)

45 / 64

Regularization L2 or Gaussian prior or weight decay 2/3

θ̂ = arg min
θ

L(f (x ; θ), y) + λ

2 ||θ||2

= arg min
θ

L(f (x ; θ), y) + R(θ; λ)

Gradient update

θ = θ − ϵ∇θL − ϵ∇θR
= θ − ϵ(∇θL − ∇θR)

What does the gradient of the regularizer look like?
Let b be a a parameter of the network:

∂

∂b R = ∂

∂b
λ

2 ||θ||2 = λ

2 2b = λb

46 / 64

Regularization L2 or Gaussian prior or weight decay 2/3

θ̂ = arg min
θ

L(f (x ; θ), y) + λ

2 ||θ||2

= arg min
θ

L(f (x ; θ), y) + R(θ; λ)

Gradient update

θ = θ − ϵ∇θL − ϵ∇θR
= θ − ϵ(∇θL − ∇θR)

What does the gradient of the regularizer look like?
Let b be a a parameter of the network:

∂

∂b R = ∂

∂b
λ

2 ||θ||2 = λ

2 2b = λb

46 / 64

Regularization L2 or Gaussian prior or weight decay 3/3

Implementation from Pytorch (slightly modified):
class SGD(Optimizer):

def step(self, closure=None):
"""Performs a single optimization step."""
for group in self.param_groups:

for p in group['params']:
if p.grad is None:

continue

d_p = p.grad.data # get gradient
weight_decay = group['weight_decay']
if weight_decay != 0:

d_p.add_(weight_decay, p.data) # add weight decay to the gradient

p.data.add_(-group['lr'], d_p) # update parameters

47 / 64

Dropout 1/4 [Hinton et al., 2012, Srivastava et al., 2014]
How does dropout work?
▶ During training, we randomly "turn off" neurons,

i.e. we randomly set elements of hidden layers z to 0
▶ During test, we do use the full network

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Intuition
▶ prevents co-adaptation between units
▶ equivalent to averaging different models that have different structure but share

parameters 48 / 64

Dropout 2/4 [Hinton et al., 2012]

49 / 64

Dropout 2/4 [Hinton et al., 2012]

49 / 64

Dropout 3/4
Dropout layer
A dropout layer is parameterized by the probability of "turning off" a neuron p ∈ [0, 1]:

z ′ = Dropout(z; p = 0.5)

Implementation
▶ z ∈ Rn: output of a hidden

layer
▶ p ∈ [0, 1]: dropout probability
▶ m ∈ {0, 1}n: mask vector
▶ z ′: hidden values after

dropout application

Forward pass:

m ∼ Bernoulli(1 − p)

z ′
i = zi ∗ mi

1 − p

Backward pass:

∂z ′
i

zi
= m

1 − p

⇒ no gradient for
"turned off" neurons.

The mask m is a vector of booleans stating if neurons zi is kept (mi = 1) or "turned
off" (mi = 0).

50 / 64

Dropout 3/4
Dropout layer
A dropout layer is parameterized by the probability of "turning off" a neuron p ∈ [0, 1]:

z ′ = Dropout(z; p = 0.5)

Implementation
▶ z ∈ Rn: output of a hidden

layer
▶ p ∈ [0, 1]: dropout probability
▶ m ∈ {0, 1}n: mask vector
▶ z ′: hidden values after

dropout application

Forward pass:

m ∼ Bernoulli(1 − p)

z ′
i = zi ∗ mi

1 − p

Backward pass:

∂z ′
i

zi
= m

1 − p

⇒ no gradient for
"turned off" neurons.

The mask m is a vector of booleans stating if neurons zi is kept (mi = 1) or "turned
off" (mi = 0).

50 / 64

Dropout 3/4
Dropout layer
A dropout layer is parameterized by the probability of "turning off" a neuron p ∈ [0, 1]:

z ′ = Dropout(z; p = 0.5)

Implementation
▶ z ∈ Rn: output of a hidden

layer
▶ p ∈ [0, 1]: dropout probability
▶ m ∈ {0, 1}n: mask vector
▶ z ′: hidden values after

dropout application

Forward pass:

m ∼ Bernoulli(1 − p)

z ′
i = zi ∗ mi

1 − p

Backward pass:

∂z ′
i

zi
= m

1 − p

⇒ no gradient for
"turned off" neurons.

The mask m is a vector of booleans stating if neurons zi is kept (mi = 1) or "turned
off" (mi = 0).

50 / 64

Dropout 3/4
Dropout layer
A dropout layer is parameterized by the probability of "turning off" a neuron p ∈ [0, 1]:

z ′ = Dropout(z; p = 0.5)

Implementation
▶ z ∈ Rn: output of a hidden

layer
▶ p ∈ [0, 1]: dropout probability
▶ m ∈ {0, 1}n: mask vector
▶ z ′: hidden values after

dropout application

Forward pass:

m ∼ Bernoulli(1 − p)

z ′
i = zi ∗ mi

1 − p

Backward pass:

∂z ′
i

zi
= m

1 − p

⇒ no gradient for
"turned off" neurons.

The mask m is a vector of booleans stating if neurons zi is kept (mi = 1) or "turned
off" (mi = 0).

50 / 64

Dropout 4/4
Where do you apply dropout?
▶ On the input of the neural network x
▶ After activation functions (σ(0) ̸= 0)
▶ Do not apply dropout on the output logits

Which dropout probability should you use?
▶ Empirical question: you have to test!
▶ Dropout probability at different layers can be different

(especially input vs. hidden layers)
▶ Usually 0.1 ≤ p ≤ 0.5

Dropout variants
Dropout can be applied differently for special neural network architectures
(e.g. convolutions, recurrent neural networks)

51 / 64

Dropout 4/4
Where do you apply dropout?
▶ On the input of the neural network x
▶ After activation functions (σ(0) ̸= 0)
▶ Do not apply dropout on the output logits

Which dropout probability should you use?
▶ Empirical question: you have to test!
▶ Dropout probability at different layers can be different

(especially input vs. hidden layers)
▶ Usually 0.1 ≤ p ≤ 0.5

Dropout variants
Dropout can be applied differently for special neural network architectures
(e.g. convolutions, recurrent neural networks)

51 / 64

Better optimizers

52 / 64

Stochastic Gradient Descent (SGD)

θ(t+1) = θ(t) − ϵ(t)∇θL

Advantages
▶ Simple
▶ Single hyper-parameter: the step-size ϵ

Downsides
▶ Forget information about previous updates
▶ Require to search for the best step-size strategy
▶ Require step-size annealing in practice: how? what scaling factor?
▶ Based on first-order information only

(i.e. the curvature of the optimized function is ignored)

53 / 64

Stochastic Gradient Descent (SGD)

θ(t+1) = θ(t) − ϵ(t)∇θL

Advantages
▶ Simple
▶ Single hyper-parameter: the step-size ϵ

Downsides
▶ Forget information about previous updates
▶ Require to search for the best step-size strategy
▶ Require step-size annealing in practice: how? what scaling factor?
▶ Based on first-order information only

(i.e. the curvature of the optimized function is ignored)
53 / 64

Momentum 1/3

∇θL(t−2)

∇θL(t−1)

∇θL(t−2)

"main direction"

54 / 64

Momentum 1/3

∇θL(t−2)

∇θL(t−1)

∇θL(t−2)

"main direction"

54 / 64

Momentum 1/3

∇θL(t−2)

∇θL(t−1)

∇θL(t−2)

"main direction"

54 / 64

Momentum 2/3

[Polyak, 1964]
▶ γ: velocity of parameters, i.e. cumulative information about past gradients
▶ µ ∈ [0, 1]: momentum, i.e. how much information must be preserved?

γ(t+1) = µγ(t) + ∇θL
θ(t+1) = θ(t) − ϵγ(t+1)

Variants
▶ Gradient dampening, i.e. diminish the contribution of the current gradient
▶ Nesterov’s Accelerated Gradient [Sutskever et al., 2013]

55 / 64

Momentum 3/3
Implementation from Pytorch (slightly modified):
for group in self.param_groups:

for p in group['params']:
if p.grad is None:

continue

d_p = p.grad.data # get the gradient
if momentum != 0:

param_state = self.state[p]
if 'momentum_buffer' not in param_state: # initialize velocity vector

buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:

buf = param_state['momentum_buffer'] # retrieve velocity vector
buf.mul_(momentum).add_(d_p) # update velocity vector

d_p = buf

p.data.add_(-group['lr'], d_p) # update parameters

56 / 64

Adaptive learning rates 1/2
Adagrad [Duchi et al., 2011]
▶ Replace global step-size with dynamic per parameter step-size + global learning rate
▶ The dynamic per parameter step-size is computed w.r.t. previous gradient l2-norm

⇒ parameters with small (resp. large) gradient will have a large (resp. small) step-size

Adadelta [Zeiler, 2012]
▶ Dynamic per parameter rate is computed with a fixed window of past gradients
▶ Approximate second-order information to incorporate curvature information

⇒ less sensitive to the learning rate hyper-parameter!

57 / 64

Adaptive learning rates 1/2
Adagrad [Duchi et al., 2011]
▶ Replace global step-size with dynamic per parameter step-size + global learning rate
▶ The dynamic per parameter step-size is computed w.r.t. previous gradient l2-norm

⇒ parameters with small (resp. large) gradient will have a large (resp. small) step-size

Adadelta [Zeiler, 2012]
▶ Dynamic per parameter rate is computed with a fixed window of past gradients
▶ Approximate second-order information to incorporate curvature information

⇒ less sensitive to the learning rate hyper-parameter!

57 / 64

Adaptive learning rates 1/2
Adagrad [Duchi et al., 2011]
▶ Replace global step-size with dynamic per parameter step-size + global learning rate
▶ The dynamic per parameter step-size is computed w.r.t. previous gradient l2-norm

⇒ parameters with small (resp. large) gradient will have a large (resp. small) step-size

Adadelta [Zeiler, 2012]
▶ Dynamic per parameter rate is computed with a fixed window of past gradients
▶ Approximate second-order information to incorporate curvature information

⇒ less sensitive to the learning rate hyper-parameter!

57 / 64

Adaptive learning rates 1/2
Adagrad [Duchi et al., 2011]
▶ Replace global step-size with dynamic per parameter step-size + global learning rate
▶ The dynamic per parameter step-size is computed w.r.t. previous gradient l2-norm

⇒ parameters with small (resp. large) gradient will have a large (resp. small) step-size

Adadelta [Zeiler, 2012]
▶ Dynamic per parameter rate is computed with a fixed window of past gradients
▶ Approximate second-order information to incorporate curvature information

⇒ less sensitive to the learning rate hyper-parameter!

57 / 64

Adaptive learning rate 2/2
Adam [Kingma and Ba, 2015]
▶ Combine dynamic per parameter learning rate and momentum
▶ Initialization bias correction

Convergence issue but works very well in practice [Reddi et al., 2018]
Variants: AdaMax, Nadam [Dozat, 2016], Radam [Liu et al., 2019], AMSGrad

Rule of thumb
▶ Optimizers based on adaptive learning rates usually work out of the box

e.g. Adam is really popular in Natural Language Processing
▶ Fine-tuned SGD with step-size annealing can provide better results at the cost of

expensive hyper-parameter tuning

Regularization issue
Weight decay is not equivalent to l2-norm when using adaptive learning rates!

58 / 64

Adaptive learning rate 2/2
Adam [Kingma and Ba, 2015]
▶ Combine dynamic per parameter learning rate and momentum
▶ Initialization bias correction

Convergence issue but works very well in practice [Reddi et al., 2018]
Variants: AdaMax, Nadam [Dozat, 2016], Radam [Liu et al., 2019], AMSGrad

Rule of thumb
▶ Optimizers based on adaptive learning rates usually work out of the box

e.g. Adam is really popular in Natural Language Processing
▶ Fine-tuned SGD with step-size annealing can provide better results at the cost of

expensive hyper-parameter tuning

Regularization issue
Weight decay is not equivalent to l2-norm when using adaptive learning rates!

58 / 64

References I

Dozat, T. (2016).
Incorporating nesterov momentum into adam.
ICLR Workshop.

Duchi, J., Hazan, E., and Singer, Y. (2011).
Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159.

Glorot, X. and Bengio, Y. (2010).
Understanding the difficulty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, M., editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort,
Sardinia, Italy. PMLR.

59 / 64

References II

He, K., Zhang, X., Ren, S., and Sun, J. (2015).
Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification.
In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), ICCV ’15, pages 1026–1034, Washington, DC, USA. IEEE Computer
Society.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2012).
Improving neural networks by preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580.

Kingma, D. P. and Ba, J. (2015).
Adam: A method for stochastic optimization.
ICLR.

60 / 64

References III

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009).
Convolutional deep belief networks for scalable unsupervised learning of
hierarchical representations.
pages 609–616.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J. (2019).
On the variance of the adaptive learning rate and beyond.
arXiv preprint arXiv:1908.03265.

Nagaraj, D., Jain, P., and Netrapalli, P. (2019).
SGD without replacement: Sharper rates for general smooth convex functions.
In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 4703–4711, Long Beach, California, USA.
PMLR.

61 / 64

References IV

Polyak, B. T. (1964).
Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

Reddi, S. J., Kale, S., and Kumar, S. (2018).
On the convergence of adam and beyond.
ICLR.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014).
Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958.

62 / 64

References V
Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013).
On the importance of initialization and momentum in deep learning.
In Dasgupta, S. and McAllester, D., editors, Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pages 1139–1147, Atlanta, Georgia, USA. PMLR.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I. (2019).
Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the
rest can be pruned.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 5797–5808, Florence, Italy. Association for Computational
Linguistics.

Zeiler, M. D. (2012).
Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701.

63 / 64

References VI

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017).
Understanding deep learning requires rethinking generalization.
ICLR 2017.

64 / 64

	Recall: neural networks
	The training loop
	Backpropagation
	Vanishing gradient, activation functions and initialization
	Regularization
	Better optimizers

