
DEEP LEARNING 
FOR NATURAL LANGUAGE PROCESSING

Lecture 1: introduction, deep learning, language modeling, CNN 
Caio Corro
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ABOUT THE COURSE
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Other (deep learning for) NLP courses 
There are many very good courses available online, see the resource page on my website. 
➤ Good news for you: plenty of resources to learn! :) 
➤ Bad news for me: how can my course be useful for you? :(

How I build this course 
1. I often observe many misconception in the NLP community 

(for example about attention, named entity recognition and BIO-tagging, CRFs, …) 
2. I built the course around a selection of these topics so you don’t make the same mistakes
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Other (deep learning for) NLP courses 
There are many very good courses available online, see the resource page on my website. 
➤ Good news for you: plenty of resources to learn! :) 
➤ Bad news for me: how can my course be useful for you? :(

Outline 
➤ Study a few important neural architectures in details 

in order to understand the building blocks of most of neural networks used in NLP 
➤ Introduction to structured prediction 
➤ Learn « advanced » PyTorch tricks that are useful in NLP (and other fields)

How I build this course 
1. I often observe many misconception in the NLP community 

(for example about attention, named entity recognition and BIO-tagging, CRFs, …) 
2. I built the course around a selection of these topics so you don’t make the same mistakes



ABOUT THE COURSE
Grading scheme 
➤ 100%: lab exercises, 2-3 students per group

Lab exercises 
➤ Lab 1: convolution for text classification (not graded) 
➤ Lab 2: language modeling 
➤ Lab 3: part-of-speech tagging
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How will I grad projects? 
➤ Experimental results are important, 

but the grade will be unrelated to how good your model works 
➤ Quality of data analysis and result analysis 
➤ Description of the model and what you explored (i.e. math, figures, etc) 
➤ Explanation of your implementation (in the report!)

http://teaching.caio-corro.fr/2020-2021/OPT11/


NATURAL LANGUAGE PROCESSING

Applications

➤ Machine Translation 
➤ Information Retrieval 
➤ Sentiment Analysis

“Apprentissage 
profond”

“Deep 
learning”

➤ Automatic Summarization 
➤ Human-Computer Interaction 
➤ …

We will focus on text, even if 
many languages are unwritten!

Data type 
➤ Structured: language is sequential 
➤ Discrete: text processing 
➤ Continuous: speech processing

Difficulties

➤ Many languages (> 6000) 
➤ Ambiguity

➤ Constantly evolving 
➤ Noisy
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THE LIMIT OF RULE BASED SYSTEMS FOR NLP

➤ Programming languages: prescriptive grammar       easy to build a rule-based system 
➤ Natural languages: comes in many shapes and forms!

⇒
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THE LIMIT OF RULE BASED SYSTEMS FOR NLP

Les étudiants sont en grève. 

Les étudiant(e)s sont en grève. 

Les étudiant.e.s sont en grève. 

Les étudiant·e·s sont en grève. 

Ils sont en grève. 

Iels sont en grève.

Gender-inclusive language

➤ Programming languages: prescriptive grammar       easy to build a rule-based system 
➤ Natural languages: comes in many shapes and forms!
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THE LIMIT OF RULE BASED SYSTEMS FOR NLP

Les étudiants sont en grève. 

Les étudiant(e)s sont en grève. 

Les étudiant.e.s sont en grève. 

Les étudiant·e·s sont en grève. 

Ils sont en grève. 

Iels sont en grève.

Gender-inclusive language

Boomers and « l’Académie Française » are apparently not capable to adapt to variation 
and diversity in languages, but you want your software to be smarter than them!

I luv pizza. 

I  

J’ème la pizza. 

J’m la pizza.

Y a le mec de Milla 

Y a le mec à Milla

Sociocultural variation

Non-standard writing

➤ Programming languages: prescriptive grammar       easy to build a rule-based system 
➤ Natural languages: comes in many shapes and forms!

⇒
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THE LIMIT OF RULE BASED SYSTEMS FOR NLP

Extract of https://en.wikipedia.org/wiki/Alan_Turing 
tagged with http://nlp.stanford.edu:8080/ner/

Problem: Named Entity Recognition (NER) 
Task: given a large corpus a text files, extract all named entities: 
➤ Person names 
➤ Place names 
➤ Dates 
➤ Locations 
➤ …
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Gazetteer from [Carlson et al., 2009]

THE LIMIT OF RULE BASED SYSTEMS FOR NLP
Easy solution 
Use a gazetteer:

Downsides 
➤ Language is ambiguous, e.g. « Tim Cook » 
➤ Language is evolving, e.g. new people, new places, … 
➤ Typos, « non-standard » writing (e.g. tweets)

In general for natural language processing 
➤ More or less intuitive for a human who speaks a given language 
➤ Fuzzy decision, lots of « weak » contradictory signals

« The spokesperson, Μιχάλης Χατζόπουλος, has declared that… »

Even for syntactic 
analysis!
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SENTENCE CLASSIFICATION

This movie is great! 
I saw that movie some years ago. 
The food was disgusting…

Sentiment analysis 
➤ Input: sentence 
➤ Output: Positive? Neutral? Negative? Inputs are of different length!
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SENTENCE CLASSIFICATION

This movie is great! 
I saw that movie some years ago. 
The food was disgusting…

Sentiment analysis 
➤ Input: sentence 
➤ Output: Positive? Neutral? Negative?

Natural language inference 
➤ Input: premise and hypothesis (2 sentences) 
➤ Output: Entailment? Neutral? Contradiction?

John likes Baltimore a lot. 
Johne likes Baltimore.

Inputs are of different length!

 8



TAGGING

They  walk  the  dog

PRP VB DET NN

Part-of-speech tagging 
➤ Input: sentence 
➤ Output: grammatical category for each word of the sentence
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TAGGING

They  walk  the  dog

PRP VB DET NN

Part-of-speech tagging 
➤ Input: sentence 
➤ Output: grammatical category for each word of the sentence

Named entity recognition with BIO tags 
➤ Input: sentence 
➤ Output: BIO tags + 6 classes 

                                (person, location, group, creative work, product, corporation)

Neil  Armstrong  visited  the  moon

B-Per I-Per O O B-Loc
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CHUNKING

Named entity recognition 
➤ Input: sentence 
➤ Output: chunks (person, location, group, creative work, product, corporation)

Neil  Armstrong  visited  the  moon

Person Location
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CHUNKING

Named entity recognition 
➤ Input: sentence 
➤ Output: chunks (person, location, group, creative work, product, corporation)

Neil  Armstrong  visited  the  moon

Person Location

Nested named entity recognition 
➤ Input: sentence 
➤ Output: nested chunks

The  president  of  the  USA  died

Person Location
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SEQUENCE GENERATION

Machine translation 
➤ Input: sentence in a source language 
➤ Output: sentence in a target language

They walk the dog Ils promènent le chien⇒

« Elles » ?
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SEQUENCE GENERATION

Machine translation 
➤ Input: sentence in a source language 
➤ Output: sentence in a target language

Image captioning 
➤ Input: image 
➤ Output: sentence describing the image

They walk the dog Ils promènent le chien⇒

Spongebob is cooking burgers⇒

« Elles » ?
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SYNTACTIC PARSING

Syntactic dependency parsing 
➤ Input: sentence 
➤ Output: bi-lexical dependencies between words

They walk the dog*

ROOT

SUBJ

OBJ

DET
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SYNTACTIC PARSING

Syntactic dependency parsing 
➤ Input: sentence 
➤ Output: bi-lexical dependencies between words

They walk the dog*

ROOT

SUBJ

OBJ

DET

Constituency parsing 
➤ Input: sentence 
➤ Output: hierarchical phrase-structure

They walk the dog

NP
VP

NP

S
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SEMANTIC PARSING

I want to book a flight from Paris to Rome.

SELECT * FROM  flight WHERE  from = "paris" AND to = "rome" 

⇒

SQL parsing 
➤ Input: sentence 
➤ Output: SQL query
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SEMANTIC PARSING

I want to book a flight from Paris to Rome.

SELECT * FROM  flight WHERE  from = "paris" AND to = "rome" 

⇒

SQL parsing 
➤ Input: sentence 
➤ Output: SQL query

Abstract Meaning Representation (AMR) parsing 
➤ Input: sentence 
➤ Output: graph

The boy want to go. ⇒

 13



DEEP LEARNING

Neural networks 
➤ Input: « raw » features, e.g. an image, a sentence 
➤ Hidden layers: sequence of non-linear transformations 
➤ Output: linear classification/regression

Parameter estimation cookbook 
➤ Loss function minimization 
➤ Stochastic gradient descent 
➤ Regularization (weight decay, dropout, …)
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DEEP LEARNING FOR NLP

Neural architectures 
➤ How to efficiently represent text data? 
➤ How to design the layers of the network? 
➤ How to output structured representations?

Training 
➤ Annotation in NLP is expensive: unsupervised pre-training is essential 
➤ Structured outputs are difficult to learn: exponential search space
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Problematic even for 
sequence generation

This is what what makes deep 
learning for NLP interesting!



BACKGROUND: 
MACHINE LEARNING
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RECALL

1
0

0.34
−5

Feature 
extractor Classifier Prediction!

The « old school » machine learning pipeline

Example of classifiers 
➤ Decision Tree: 

➤ Make a decision considering a limited number of features 
➤ Use conjunction of features to make a prediction 

➤ K-nearest neighbors: 
➤ All features are used and considered equals 

➤ Linear models: 
➤ Weight features so they are more or less important to make a decision
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BINARY CLASSIFICATION

 18

Data 
➤ Input: 
➤ Output:                        or                         

x ∈ ℝd

y ∈ {0,1} y ∈ {−1,1}

Parameters 
➤ Projection vector: 
➤ Intercept:

a ∈ ℝd

b ∈ ℝ



BINARY CLASSIFICATION

 18

Data 
➤ Input: 
➤ Output:                        or                         

x ∈ ℝd

y ∈ {0,1} y ∈ {−1,1}

Parameters 
➤ Projection vector: 
➤ Intercept:

a ∈ ℝd

b ∈ ℝ

Decision

f(x) = {1 if  a⊤x + b ≥ 0,
0 otherwise.

or f(x) = {1 if  a⊤x + b ≥ 0,
−1 otherwise.



BINARY CLASSIFICATION

 18

Data 
➤ Input: 
➤ Output:                        or                         

x ∈ ℝd

y ∈ {0,1} y ∈ {−1,1}

Parameters 
➤ Projection vector: 
➤ Intercept:

a ∈ ℝd

b ∈ ℝ

Decision

f(x) = {1 if  a⊤x + b ≥ 0,
0 otherwise.

or f(x) = {1 if  a⊤x + b ≥ 0,
−1 otherwise.

Probabilistic output

p(y = 1 |x) = σ(a⊤x + b) =
exp(a⊤x + b)

1 + exp(a⊤x + b)

p(y = 0 |x) = 1 − σ(a⊤x + b)



INTUITION

Points in one class

Points in the other 
class

Hyperplane that separates 
the two classes
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TRAINING 1/2
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Training data 
Assume access to n iid labeled datapoints: D = { ⟨x(i), y(i)⟩ }n

i=1

Actually not a set

Loss function 
Function defined as  
➤ Perceptron loss: 

➤ Binary hinge loss:  

➤ Binary negative log-likelihood:

ℓ : {0,1} × ℝd → ℝ+

ℓ(y, w) = − w × y + log(1 + exp(w))

ℓ(y, w) = max(0,1 − w × (2y − 1))

ℓ(y, w) = max(0, − w × (2y − 1))

Training objective

min
a ∈ ℝd,
b ∈ ℝ

1
n ∑

⟨x,y⟩∈D

ℓ(y, a⊤x + b) + α × r(a)

Regularization term



TRAINING 2/2
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Training objective

min
a ∈ ℝd,
b ∈ ℝ

1
n ∑

⟨x,y⟩∈D

ℓ(y, a⊤x + b) + α × r(a)

Regularization term

Training algorithms 
➤ Simple solution: (sub-)gradient descent 
➤ Specialized solution 

(depending on the choice of loss and regularization)

Can be way faster!



(SUB-)GRADIENT DESCENT

θ(t+1) = θ(t) − η × ∇θg(θ)

How to choose the step-size? 
➤ Fixed step size 

➤ Diminishing step size 

➤ Line-search (search for the best step-size at a given point)

For linear models! 
Neural networks optimization 
relies on different heuristics

Convergence 
➤ Theoretical guarantee 

➤ Fast and efficient in practice
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MULTICLASS CLASSIFICATION WITH K CLASSES

 23

Data 
➤ Input: 
➤ Output:                      or  

x ∈ ℝd

y ∈ E(k)

Parameters 
➤ Projection vector: 
➤ Intercept:

A ∈ ℝk×d

b ∈ ℝky ∈ {1...k}

Set of one-hot vectors of size k



MULTICLASS CLASSIFICATION WITH K CLASSES

 23

Data 
➤ Input: 
➤ Output:                      or  

x ∈ ℝd

y ∈ E(k)

Parameters 
➤ Projection vector: 
➤ Intercept:

A ∈ ℝk×d

b ∈ ℝk

Decision

f(x) = argmax
y∈E(k)

y⊤(Ax + b) or f(x) = argmax
y∈{1...k}

[Ax + b]y

y ∈ {1...k}

Set of one-hot vectors of size k



MULTICLASS CLASSIFICATION WITH K CLASSES

 23

Data 
➤ Input: 
➤ Output:                      or  

x ∈ ℝd

y ∈ E(k)

Parameters 
➤ Projection vector: 
➤ Intercept:

A ∈ ℝk×d

b ∈ ℝk

Decision

f(x) = argmax
y∈E(k)

y⊤(Ax + b) or f(x) = argmax
y∈{1...k}

[Ax + b]y

Probabilistic output

p(y |x) =
exp(y⊤(Ax + b))

∑y′ 
exp(y′ ⊤(Ax + b))

y ∈ {1...k}

Set of one-hot vectors of size k



ILLUSTRATION
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Problem 
➤ Input: features 
➤ Output: 1-in-k prediction 

(e.g. select the part-of-speech tag associated with a given word)

= +

×

w A b

x
w = Ax + bLinear classifier 

➤ Input dim: 3 
➤ Output dim: k=4 classes



TRAINING
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Training data 
Assume access to n iid labeled datapoints: D = { ⟨x(i), y(i)⟩ }n

i=1

Actually not a set

Loss function 
Function defined as  

➤ Hinge loss:  

➤ Negative log-likelihood:

ℓ : E(k) × ℝd → ℝ+

ℓ(y, w) = − w⊤y + log∑
y′ 

exp w⊤y′ 

ℓ(y, w) = max(0, − w⊤y + 1 + max
y′ ≠y

w⊤y′ )

Training objective

min
A ∈ ℝk×d,

b ∈ ℝk

1
n ∑

⟨x,y⟩∈D

ℓ(y, A⊤x + b) + α × r(A)

Regularization term



LIMITS OF LINEAR CLASSIFIERS
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TEXT CLASSIFICATION

« This movie is great! »

Task 
Predict if a movie review is good or bad.

« Worst movie ever… »

Features 
1. Uni-gram features: 

➤ One feature per word in the vocabulary 
➤ The feature is equal to one if the word is in the review 

2. Bi-gram features: 
➤ One feature per couple of words in the vocabulary 
➤ The feature is equal to one if the words appear consecutively in the review
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FEATURE SET

Unigram features 
➤ Number of features: |V| 
➤ We can use a dictionary to map a word to an index in a vector

Let V be the vocabulary.

x =

0
1
1
0. . .
0

movie
great

bad

worst
house

Bigram features 
➤ Number of features: |V|x|V| 
➤ Similarly, use a dict!

x =
1
0. . .
1

The movie
is great

This movie

Problem 
➤ The feature vector is sparse 
➤ The dot product can be unnecessarily expensive! 
➤ There is no inductive bias: a sentence is not bag-of-words, it is a sequence!  28



PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO 
➤ Can we characterize formally in which cases we can? YES
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PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO 
➤ Can we characterize formally in which cases we can? YES
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PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO 
➤ Can we characterize formally in which cases we can? YES
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A VERY SHORT INTRODUCTION 
TO DEEP LEARNING
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MAIN IDEA

 31

« Latent » hidden representation 
➤ Compute a sequence of hidden representations so that classes are linear separable 
➤ Train everything end-to-end via gradient descent!

Classifier 
Parameterized function fθ : 𝒳 → 𝒴

Parameters

Feature space

Output space

Neural Network 
« Complicated » non convex parameterized function fθ : 𝒳 → 𝒴



MULTILAYER PERCEPTRON 1/2

= tanh( +

×

z(1) A(1) b(1)

x

)

z(1) = σ (A(1)x + b(1)) z(2) = σ (A(2)z(1) + b(2)) w = A(3)z(2) + b(3)

Output projectionFirst hidden layer Second hidden layer

➤     : input features 
➤        : hidden representations 
➤     : output logits

z(i)

w

θ = {A(1), b(1), . . . }x
σ

➤                                    : trainable parameters 
➤     : piecewise non-linear activation function
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OPTIMIZATION

 33

Beyond gradient descent (GD) 
➤ Stochastic GD: approximate the objective using a random subset of datapoints 

(i.e. using a minibatch, or even a single datapoint) 
➤ « improved » GD optimization algorithms: 

➤ Momentum 
➤ Adam 
➤ …

In NLP, use Adam as default :)

Backpropagation algorithm 
1. Build computation graph 
2. Back-propagate to compute the (sub-)gradient 
Important: NLP often requires to allow to build dynamic computation graphs!



REPRESENTATION LEARNING: COMPUTER VISION [LEE ET AL., 2009]
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REPRESENTATION LEARNING: NATURAL LANGUAGE PROCESSING [VOITA ET AL., 2019]
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GENERALIZATION

 36

Overparameterized neural networks 
➤ Networks where the number of parameters exceed the training dataset size. 
➤ Can learn by heart the dataset, 

i.e. overfit the data -> does not generalize well to unseen data 
➤ Are easier to optimize in practice

Monitoring the training process 
➤ Loss should go down 
➤ Training accuracy should go up 
➤ Dev accuracy should go up

Regularization 
Techniques to control parameters during learning and prevent overfitting



LEARNING WITH RANDOM INPUTS AND LABELS 1/2 [ZHANG ET AL., 2017]
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LEARNING WITH RANDOM INPUTS AND LABELS 2/2 [ZHANG ET AL., 2017]
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DROPOUT 1/4 [HINTON ET AL., 2012, SRIVASTAVA ET AL., 2014]

 39

How does dropout work?
➤ During training, we randomly "turn off" neurons, 

i.e. we randomly set elements of hidden layers to 0 
➤ During test, we do use the full network

Intuition
➤ prevents co-adaptation between units
➤ equivalent to averaging different models

Units must be « independent »



DROPOUT 2/4 [HINTON ET AL., 2012]
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DROPOUT 3/4 [HINTON ET AL., 2012]
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Dropout layer 
A dropout layer is parameterized by the probability of "turning off" a neuron

z′ = Dropout(z, p = 0.5)

Implementation

The mask m a vector of booleans stating if neuron is zi kept (mi=1) or « turned off" (mi=0).



DROPOUT 4/4 [HINTON ET AL., 2012]
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Where do you apply dropout? 
➤ On the input of the neural network 
➤ After activation function
➤ Do not apply dropout on the output logits

Which dropout probability should you use?
➤ Empirical question: you have to test!
➤ Dropout probability at different layers can be different 

(especially input vs. hidden layers) 
➤ Usually between 0.1 and 0.5

Dropout variants 
Dropout can be applied differently for special neural network architectures 
(e.g. convolutions, recurrent neural networks)



LANGUAGE MODELING
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LANGUAGE MODELING
The language modeling task 
Build a model that assigns a probability to any given sentence

p(y1, y2, . . . , yn)

« Unsupervised » 
problem

 44



LANGUAGE MODELING
The language modeling task 
Build a model that assigns a probability to any given sentence

p(y1, y2, . . . , yn)

« Unsupervised » 
problem

Usefulness
➤ Text generation

y1 ∼ p(y1) y2 ∼ p(y2 |y1) y3 ∼ p(y3 |y1, y2) . . .
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LANGUAGE MODELING
The language modeling task 
Build a model that assigns a probability to any given sentence

p(y1, y2, . . . , yn)

« Unsupervised » 
problem

Usefulness

➤ Test if a neural architecture is able to learn a good representation of language

p(«The dog is eating») > p(«Is eating dog the»)

➤ Text generation
y1 ∼ p(y1) y2 ∼ p(y2 |y1) y3 ∼ p(y3 |y1, y2) . . .
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LANGUAGE MODELING
The language modeling task 
Build a model that assigns a probability to any given sentence

p(y1, y2, . . . , yn)

« Unsupervised » 
problem

Usefulness

➤ Test if a neural architecture is able to learn a good representation of language

p(«The dog is eating») > p(«Is eating dog the»)

➤ Text generation
y1 ∼ p(y1) y2 ∼ p(y2 |y1) y3 ∼ p(y3 |y1, y2) . . .

➤ Improve sequence generation problems by using unlabeled data, 
e.g. machine translation, speech recognition

̂y1… ̂yn = max
y1…yn

λ × p(y1…yn |x1…xm) + (1 − λ) × p(y1…yn)

Translation accuracy Target language adequacy
 44



LANGUAGE MODEL EVALUATION

I love pizza with { mushrooms 
pineapples 
C++ 
…
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LANGUAGE MODEL EVALUATION

I love pizza with { mushrooms 
pineapples 
C++ 
…

Evaluation 
➤ Predict next word: suitable words should have a higher probability than incoherent ones 
➤ Evaluate on data: better language model should give a higher probability to the test set

Difficult for large 
scale evaluation
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LANGUAGE MODEL EVALUATION

Perplexity 
➤ Probability of test sentences normalized  by the number of words 
➤ The lower the better

PP(y1, . . . , yn) = p(y1, . . . , yn)− 1
n

=
1

p(y1, . . . , yn)
n

Intuition: longer sentences are less 
probable so we want to normalize to able 
to compare sentences of different sizes

I love pizza with { mushrooms 
pineapples 
C++ 
…

Evaluation 
➤ Predict next word: suitable words should have a higher probability than incoherent ones 
➤ Evaluate on data: better language model should give a higher probability to the test set

Difficult for large 
scale evaluation
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N-GRAM MODEL 1/2
Auto-regressive model 
The probability of a word is conditioned on previous words only, 
or, in other words, we assume a generative model that produce words from left to right.

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)
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N-GRAM MODEL 1/2

Markov chain 
Memory-less auto-regressive model:

➤ 1st order Markov chain: p(y1, . . . , yn) = p(y1)
n

∏
i=2

p(yi |yi−1)

Bi-gram model

p(«The dog is eating») = p(«The»)p(«dog» |«The»)p(«is» |«dog»)p(«eating» |«is»)

Auto-regressive model 
The probability of a word is conditioned on previous words only, 
or, in other words, we assume a generative model that produce words from left to right.

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)
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N-GRAM MODEL 1/2

p(y1, . . . , yn) = p(y1) p(y2 |y1)
n

∏
i=3

p(yi |yi−1, yi−2)

Tri-gram model

➤ 2nd order Markov chain:

Markov chain 
Memory-less auto-regressive model:

➤ 1st order Markov chain: p(y1, . . . , yn) = p(y1)
n

∏
i=2

p(yi |yi−1)

Bi-gram model

p(«The dog is eating») = p(«The»)p(«dog» |«The»)p(«is» |«dog»)p(«eating» |«is»)

Auto-regressive model 
The probability of a word is conditioned on previous words only, 
or, in other words, we assume a generative model that produce words from left to right.

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)
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N-GRAM MODEL 2/2
1st order Markov chain estimation

p(« cat » |« the ») =
Number of times « the cat » appears in the training data

Number of times « the » appears in the training data

Smoothing 
The distribution is really sparse, many sequences of words have a probability of zero.

Worse for high order models!
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N-GRAM MODEL 2/2
1st order Markov chain estimation

p(« cat » |« the ») =
Number of times « the cat » appears in the training data

Number of times « the » appears in the training data

Smoothing 
The distribution is really sparse, many sequences of words have a probability of zero.

Worse for high order models!

p(« cat » |« the ») =
1 + Number of times « the cat » appears in the training data

1 + Number of times « the » appears in the training data

➤ Introduce fake occurrences
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N-GRAM MODEL 2/2
1st order Markov chain estimation

p(« cat » |« the ») =
Number of times « the cat » appears in the training data

Number of times « the » appears in the training data

Smoothing 
The distribution is really sparse, many sequences of words have a probability of zero.

Worse for high order models!

p(« cat » |« the ») =
1 + Number of times « the cat » appears in the training data

1 + Number of times « the » appears in the training data

➤ Introduce fake occurrences

➤ Interpolation
p̃(« cat » |« the big ») = λ(1) × p(« cat » |« the big »)

such that λ(1), λ(2), λ(3) ≥ 0 and λ(1) + λ(2) + λ(3) = 1

+λ(2) × p(« cat » |« big »)
+λ(3) × p(« cat »)

Tri-gram

Bi-gram

Uni-gram
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LIMITATIONS OF N-GRAMS MODELS

➤ Limited context, no long range dependencies

The big cat 
The fat cat

Pros 
➤ Easy to estimate

Cons 
➤ Unobserved sequences will have small probabilities

« big » and « fat » are semantically similar, therefore we would 
like both examples to have approx. the same probability 

even if « fat cat » doest not appear in training data.

The cats, I have been told, are big.
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N-GRAM MODEL 
WITH A MULTILINEAR PERCEPTRON
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NEURAL N-GRAM MODEL

p(« cat » |« big »)

Task 
Predict the next word give a fixed size history. 
➤ Bi-gram model: p(« cat » |« The big »)➤ Tri-gram model:
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NEURAL N-GRAM MODEL

p(« cat » |« big »)

Task 
Predict the next word give a fixed size history. 
➤ Bi-gram model: p(« cat » |« The big »)➤ Tri-gram model:

Output 
It’s a classification problem, similar to MNIST digit classification! 
Each output class represent a word, i.e. we map word to integers in V = {0,1,...}

~100.000 words 
is standard
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NEURAL N-GRAM MODEL

p(« cat » |« big »)

Task 
Predict the next word give a fixed size history. 
➤ Bi-gram model: p(« cat » |« The big »)➤ Tri-gram model:

= +

×

w A b

z

… … …

Very big 
matrix!

z ∈ ℝm

W ∈ ℝ|V|×m

b ∈ ℝ|V|×m

w ∈ ℝ|V|

Output 
projection

Last hidden 
representation

Output logits

Output 
It’s a classification problem, similar to MNIST digit classification! 
Each output class represent a word, i.e. we map word to integers in V = {0,1,...}

~100.000 words 
is standard
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NEURAL N-GRAM MODEL

Input 
➤ Bi-gram model: 1 word 
➤ Tri-gram model: 2 words

One hot encoding of words 
➤ Vocabulary mapped to a set of integers: 
➤ Input words are mapped to a one hot encoding vector

V = {0,1,...}
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NEURAL N-GRAM MODEL

Input 
➤ Bi-gram model: 1 word 
➤ Tri-gram model: 2 words

One hot encoding of words 
➤ Vocabulary mapped to a set of integers: 
➤ Input words are mapped to a one hot encoding vector

V = {0,1,...}

0
0
1…
0

One-hot encoding of 
the word mapped to 2
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NEURAL N-GRAM MODEL

Input 
➤ Bi-gram model: 1 word 
➤ Tri-gram model: 2 words

One hot encoding of words 
➤ Vocabulary mapped to a set of integers: 
➤ Input words are mapped to a one hot encoding vector

V = {0,1,...}

0
0
1…
0

One-hot encoding of 
the word mapped to 2

…

…
×
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NEURAL N-GRAM MODEL

Input 
➤ Bi-gram model: 1 word 
➤ Tri-gram model: 2 words

One hot encoding of words 
➤ Vocabulary mapped to a set of integers: 
➤ Input words are mapped to a one hot encoding vector

V = {0,1,...}

0
0
1…
0

One-hot encoding of 
the word mapped to 2

…

…
×

z

…
=
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LIMITATIONS OF NEURAL N-GRAM MODELS

Pros 
➤ Generalize to unseen n-grams

Cons 
➤ More expensive to estimate than the non-neural model 
➤ The output layer is expensive to compute! 
➤ Limited context, no long range dependencies

The cats, I have been told, are big.

Recurrent networks 
solve this problem: 

next week!
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WORD EMBEDDINGS

 53



ISSUE WITH WORD AS INPUT

One hot encoding of words 
➤ Vocabulary mapped to a set of integers: 
➤ Input words are mapped to a one hot encoding vector

V = {0,1,...}

0
0
1…
0

One-hot encoding of 
the word mapped to 2

…

…
×

z

…
=

Select a row of 
the matrix

!
Explicitly computing this matrix 
multiplication is expensive: use 
embedding tables instead!

Word embedding
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WORD EMBEDDING

 55

Dictionary 
➤ Dictionary: map each word to an integer 
➤ Embedding table: map an integers to a vector These vectors are parameters that are 

trained with the rest of the network!

Unknown word 
At test time, you may see words that where not present in the training set :( 
1. Add a special « unknown word » to the dictionary/embedding table 
2. Learn it by randomly replacing other words with the « unknown word » 

during training

car: 0 
red: 1 
big: 2 
… … … … …

0 1 3 …



PYTORCH IMPLEMENTATION

emb_table = torch.nn.Embedding( 
    num_embeddings = 10, 
    embedding_dim = 100 
) 

words = torch.LongTensor([2, 5]) 
# x.shape = (2, 100) 
x = emb_table(words) 

# x.shape = (1, 200) 
x = x.reshape(1, -1) 

Construct embedding table

Retrieve embeddings 
of the input

Reshape so that it looks like a mini 
batch of size one with 2 input words
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CONVOLUTIONAL NEURAL NETWORK
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SEQUENCE REPRESENTATION

Motivation 
➤ Build token representation for out-of-vocabulary words (e.g. for tagging) 
➤ Build sentence-level representation for sentence classification

This movie is great! 
I saw that movie some years ago. 
The food was disgusting…

To classify these sentences, we need to 
build a fixed size hidden representation 

to feed it to a MLP!
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BAG-OF-WORDS MODEL

This movie is great !

 59



BAG-OF-WORDS MODEL

This movie is great !

Word embeddings
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BAG-OF-WORDS MODEL

This movie is great !

Word embeddings

z

+ + + +

Input of a MLP for 
classification

=
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BAG-OF-WORDS MODEL

This movie is great !

Word embeddings

This movie is great, acting is not bad. 

This movie is not great, acting is bad.

These 2 sentences will have 
the same representation!

z

+ + + +

Input of a MLP for 
classification

=
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SEQUENCE REPRESENTATION

Motivation 
➤ Build token representation for out-of-vocabulary words (e.g. for tagging) 
➤ Build sentence-level representation for sentence classification

This movie is great! 
I saw that movie some years ago. 
The food was disgusting…

To classify these sentences, we need to 
build a fixed size hidden representation 

to feed it to a MLP!

Convolutional Neural Network 
1. Convolution over words with a fixed size sliding window 
2. Pooling operation
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SLIDING WINDOW OF CONVOLUTIONS
This movie is great !

Word embeddings
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SLIDING WINDOW OF CONVOLUTIONS
This movie is great !

Word embeddings}

This

movie

Concatenate word 
embeddings in the 

window
Window of size 2
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SLIDING WINDOW OF CONVOLUTIONS
This movie is great !

Word embeddings}

This

movie

×

=

f1

+

A b

Concatenate word 
embeddings in the 

window

Features extracted 
by the convolution

Parameters of the 
convolution

Parameters of the 
convolution

Window of size 2
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SLIDING WINDOW OF CONVOLUTIONS
This movie is great !

Word embeddings

f1

}

movie

is

×

=

f2

+

A bf2

Slide the window!
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SLIDING WINDOW OF CONVOLUTIONS
This movie is great !

Word embeddings

f1

}
is

great

×

=

f3

+

A bf2 f3
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SLIDING WINDOW OF CONVOLUTIONS
This movie is great !

Word embeddings

f1

}
great

!

×

=

f4

+

A bf2 f4f3
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SLIDING WINDOW OF CONVOLUTIONS
This movie is great !

Word embeddings

f1 f2 f4f3

Sequence of 
extracted features
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POOLING OPERATION
This movie is great !
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POOLING OPERATION
This movie is great !

F = [f1; f2; f3; f4]

Local feature extraction 
with a sliding window
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POOLING OPERATION
This movie is great !

F = [f1; f2; f3; f4]f1

= max( )

Pooling operation 
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POOLING OPERATION
This movie is great !

F = [f1; f2; f3; f4]f1

= max( )
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POOLING OPERATION
This movie is great !

F = [f1; f2; f3; f4]f1

= max( )

z

= σ( )

Fixed size sentence 
hidden representation 

Non-linearity 
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SUMMARY

Convolution 
➤ The size of sliding window is an hyper-parameter (2, 3, 4…) 
➤ The hidden representation of convolutions with different sliding window sizes 

can be concatenated 
➤ The sentence can be padded with begin/end of sentence tokens

Pooling and activation functions 
➤ Pooling functions: max, min, mean 
➤ Activation functions: tanh, relu, sigmoid

Word representation 
Word representation can be constructed with a CNN on character embeddings 
(and possibly concatenated with a word embedding)
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