

DEEP LEARNING For Natural Language Processing

Lecture 2: Recurrent Neural Networks (RNNs) Caio Corro

LECTURE 1 RECALL

Language modeling with a multi-layer perceptron

2nd order Markov chain: $p(y_1, ..., y_n) = p(y_1) \quad p(y_2 | y_1) \quad \prod_{i=3}^n p(y_i | y_{i-1}, y_{i-2})$ $\mathbf{x} = \begin{bmatrix} Embedding of y_{i-1} \\ Embedding of y_{i-2} \end{bmatrix} \quad \mathbf{z} = \sigma \left(\mathbf{U}^{(1)}\mathbf{x} + \mathbf{b}^{(1)} \right) \quad \mathbf{w} = \mathbf{U}^{(2)}\mathbf{z} + \mathbf{b}^{(2)} \quad p(y_i | y_{i-1}, y_{i-2}) = \frac{\exp(\mathbf{w}_{y_i})}{\sum_{y'} \exp(\mathbf{w}_{y'})}$ Concatenate the embeddings of the two previous words $\begin{array}{c} \text{Hidden} \\ \text{representation} \end{array} \quad \text{Output} \\ \text{projection} \end{array} \quad \begin{array}{c} \text{Probability} \\ \text{distribution} \end{array}$

LECTURE 1 RECALL

Language modeling with a multi-layer perceptron

2nd order Markov chain: $p(y_1, ..., y_n) = p(y_1) \quad p(y_2 | y_1) \quad \prod_{i=3} p(y_i | y_{i-1}, y_{i-2})$

$$= \begin{bmatrix} \text{Embedding of } y_{i-1} \\ \text{Embedding of } y_{i-2} \end{bmatrix} \quad \mathbf{z} = \sigma \left(\mathbf{U}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} \right) \quad \mathbf{w} = \mathbf{U}^{(2)} \mathbf{z} + \mathbf{b}^{(2)} \quad p(y_i | y_{i-1}, y_{i-2}) = \frac{\exp(\mathbf{w}_{y_i})}{\sum_{y'} \exp(\mathbf{w}_{y'})}$$

Sentence classification with a Convolutional Neural Network

- 1. Convolution: sliding window of fixed size of the input sentence
- 2. Mean/max pooling over convolution outputs
- 3. Multi-linear perceptron

X

LECTURE 1 RECALL

Language modeling with a multi-layer perceptron

2nd order Markov chain: $p(y_1, \dots, y_n) = p(y_1) \quad p(y_2 | y_1)$

$$\prod_{i=3}^{n} p(y_i | y_{i-1}, y_{i-2})$$

$$\mathbf{x} = \begin{bmatrix} \text{Embedding of } y_{i-1} \\ \text{Embedding of } y_{i-2} \end{bmatrix} \quad \mathbf{z} = \sigma \left(\mathbf{U}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} \right) \quad \mathbf{w} = \mathbf{U}^{(2)} \mathbf{z} + \mathbf{b}^{(2)} \quad p(y_i | y_{i-1}, y_{i-2}) = \frac{\exp(\mathbf{w}_{y_i})}{\sum_{y'} \exp(\mathbf{w}_{y'})}$$

Sentence classification with a Convolutional Neural Network

- 1. Convolution: sliding window of fixed size of the input sentence
- 2. Mean/max pooling over convolution outputs
- 3. Multi-linear perceptron

Main issue

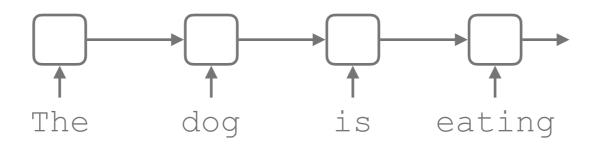
- ► These 2 networks only use local word-order information
- ► No long range dependencies

LONG RANGE DEPENDENCIES

Today

Recurrent neural networks

- ► Inputs are fed sequentially
- State representation updated at each input

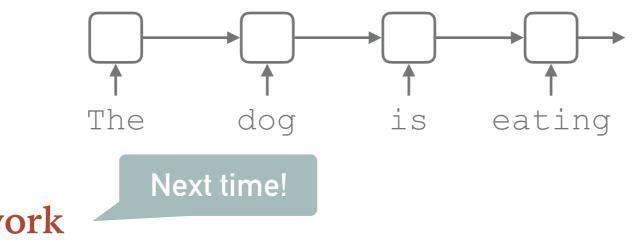


LONG RANGE DEPENDENCIES

Today

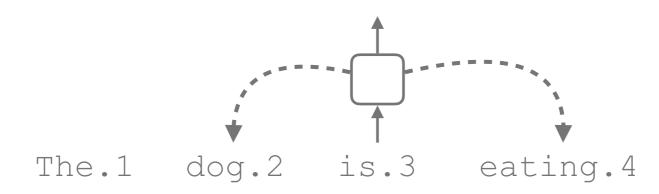
Recurrent neural networks

- ► Inputs are fed sequentially
- ► State representation updated at each input



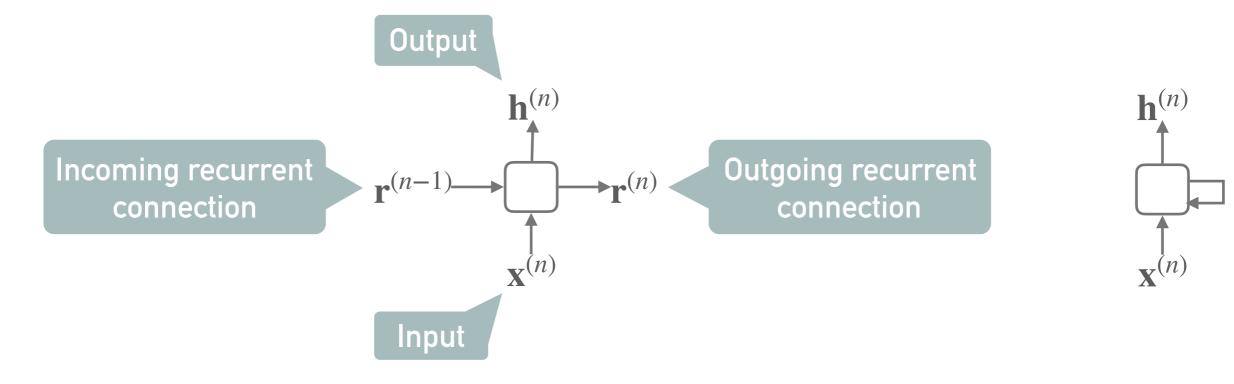
Attention network

- ► Inputs contain position information
- ► At each position look at any input in the sentence



RECURRENT NEURAL NETWORK

Recurrent neural network cell

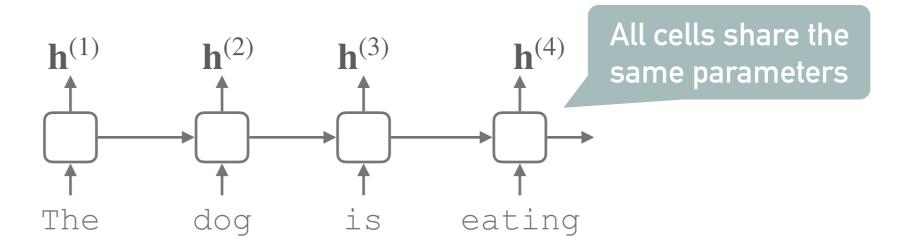


RECURRENT NEURAL NETWORK

Recurrent neural network cell



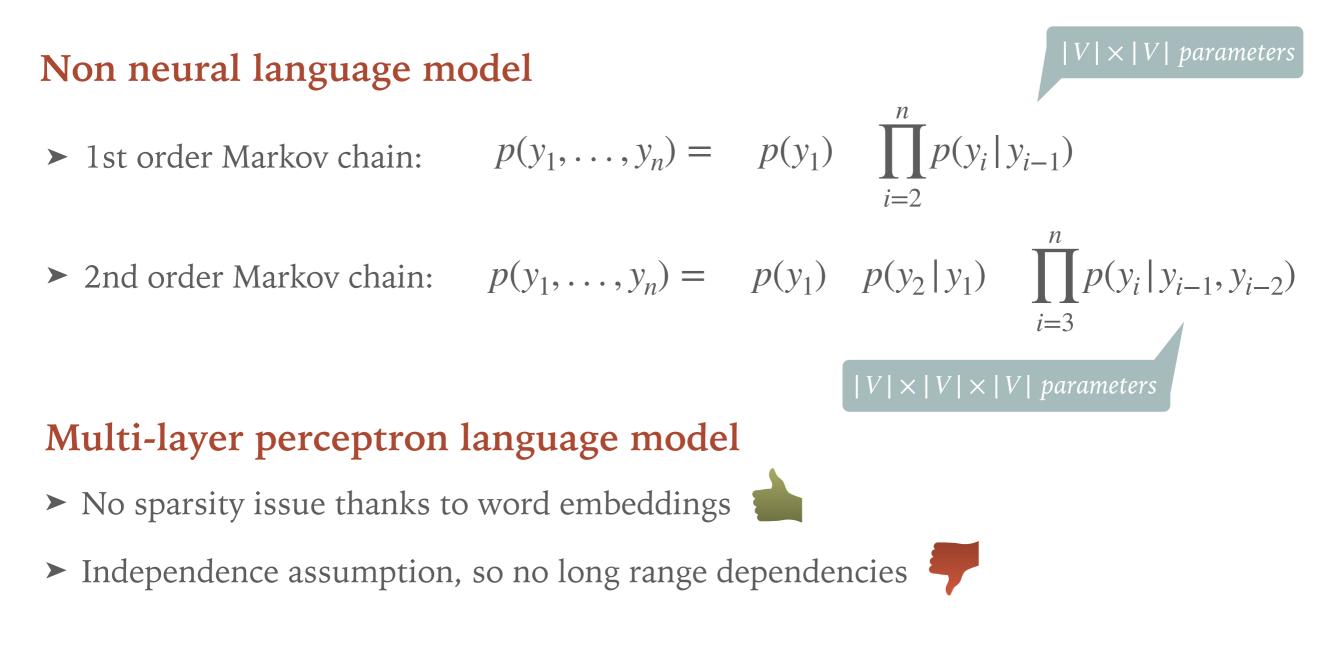
Dynamic neural network



LANGUAGE MODEL

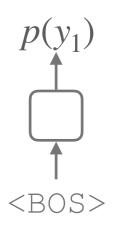
Why do we usually make independence assumptions?

- ► Less parameters to learn
- ► Less sparsity

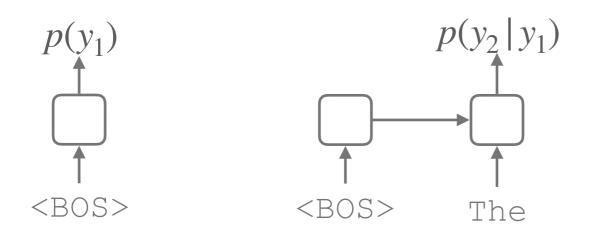


 $p(y_1 \dots y_n) = p(y_1, \dots, y_{n-1})p(y_n | y_1, \dots, y_{n-1})$

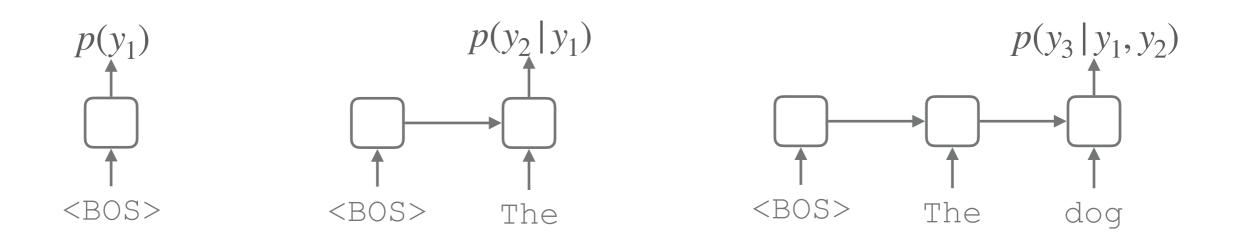
 $p(y_1 \dots y_n) = p(y_1, \dots, y_{n-1})p(y_n | y_1, \dots, y_{n-1})$



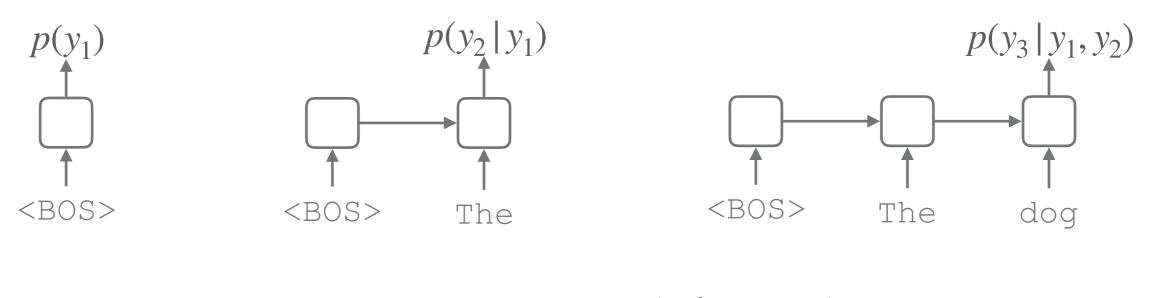
 $p(y_1 \dots y_n) = p(y_1, \dots, y_{n-1})p(y_n | y_1, \dots, y_{n-1})$

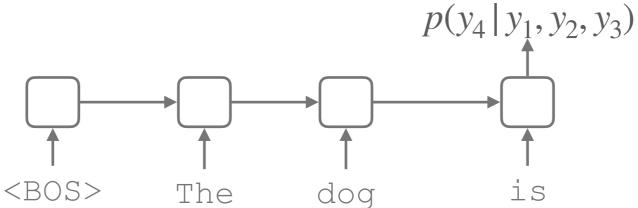


$$p(y_1 \dots y_n) = p(y_1, \dots, y_{n-1})p(y_n | y_1, \dots, y_{n-1})$$



$$p(y_1 \dots y_n) = p(y_1, \dots, y_{n-1})p(y_n | y_1, \dots, y_{n-1})$$





SENTENCE CLASSIFICATION

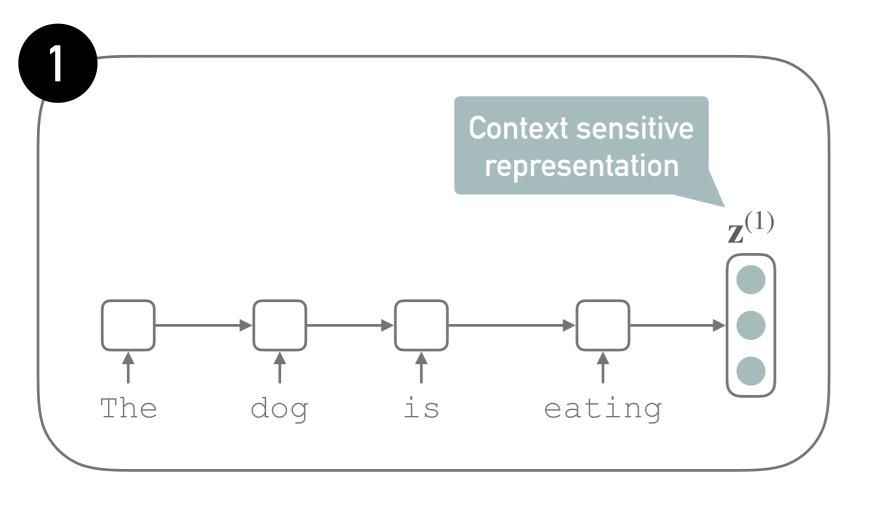
Neural architecture

- 1. A recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. A multi-layer perceptron takes as input this representation and output class weights

SENTENCE CLASSIFICATION

Neural architecture

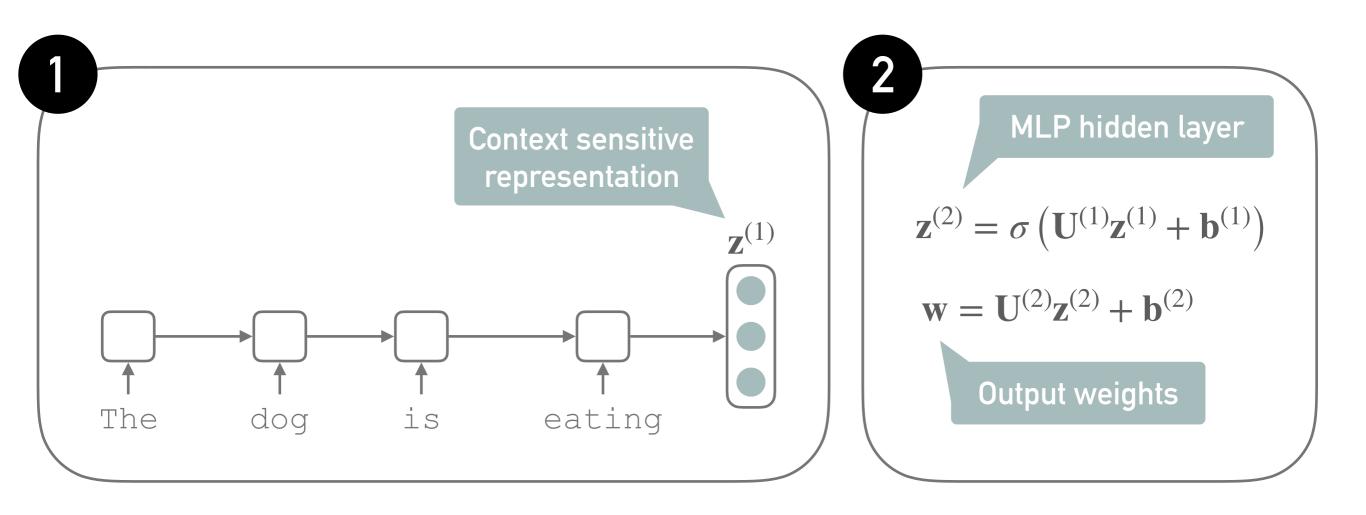
- 1. A recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. A multi-layer perceptron takes as input this representation and output class weights



SENTENCE CLASSIFICATION

Neural architecture

- 1. A recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. A multi-layer perceptron takes as input this representation and output class weights

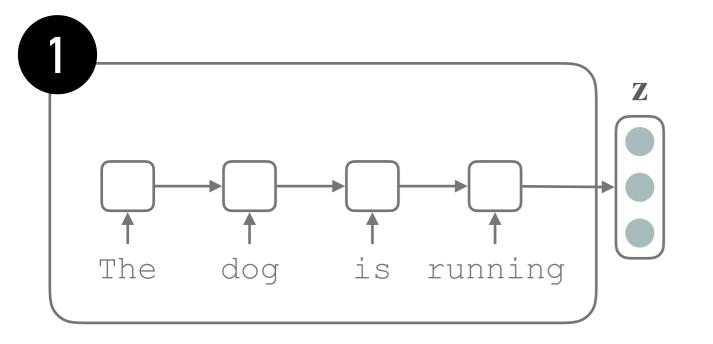


Neural architecture: Encoder-Decoder

- 1. <u>Encoder:</u> a recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. <u>Decoder:</u> a different recurrent neural network (RNN) compute the translation, word after word

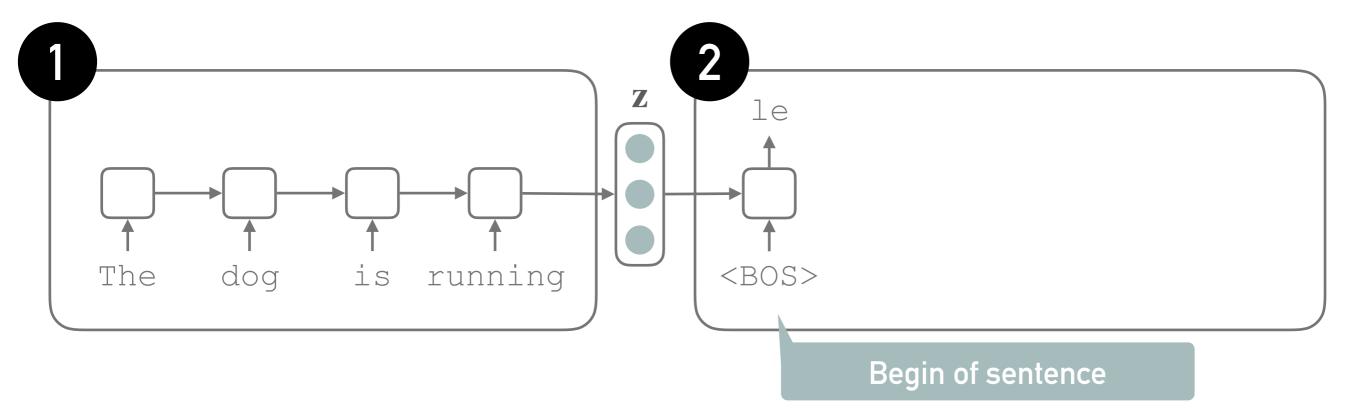
Neural architecture: Encoder-Decoder

- 1. <u>Encoder:</u> a recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. <u>Decoder:</u> a different recurrent neural network (RNN) compute the translation, word after word



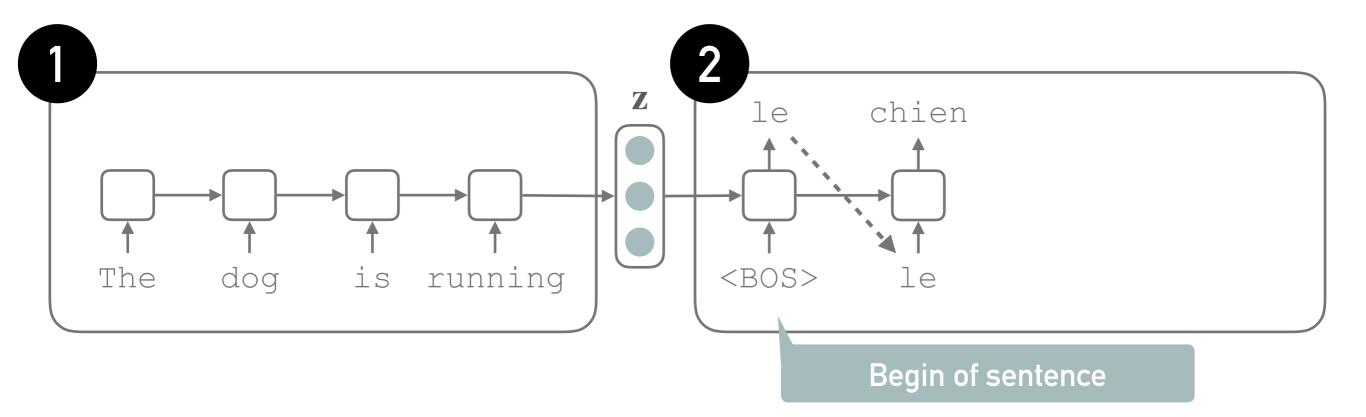
Neural architecture: Encoder-Decoder

- 1. <u>Encoder:</u> a recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. <u>Decoder:</u> a different recurrent neural network (RNN) compute the translation, word after word



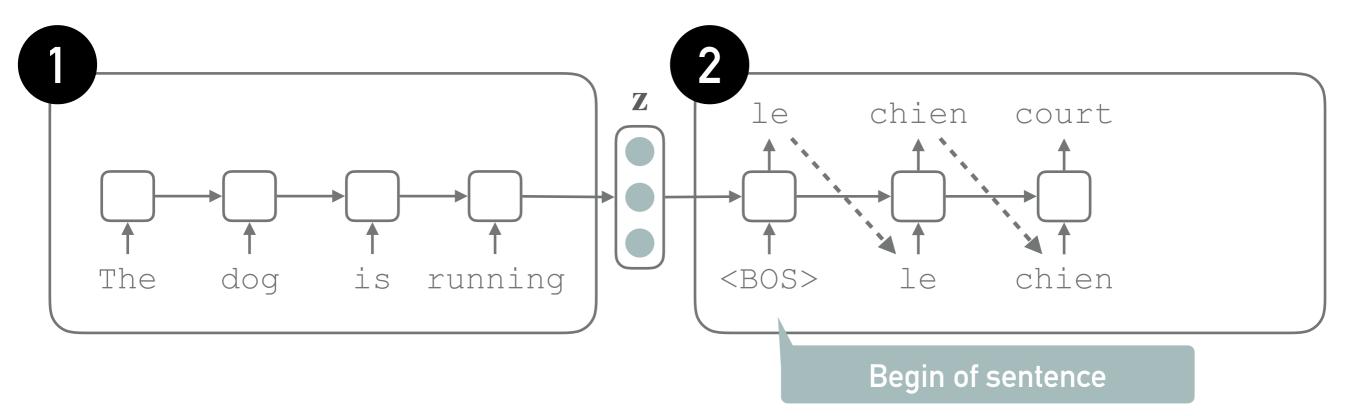
Neural architecture: Encoder-Decoder

- 1. <u>Encoder:</u> a recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. <u>Decoder:</u> a different recurrent neural network (RNN) compute the translation, word after word



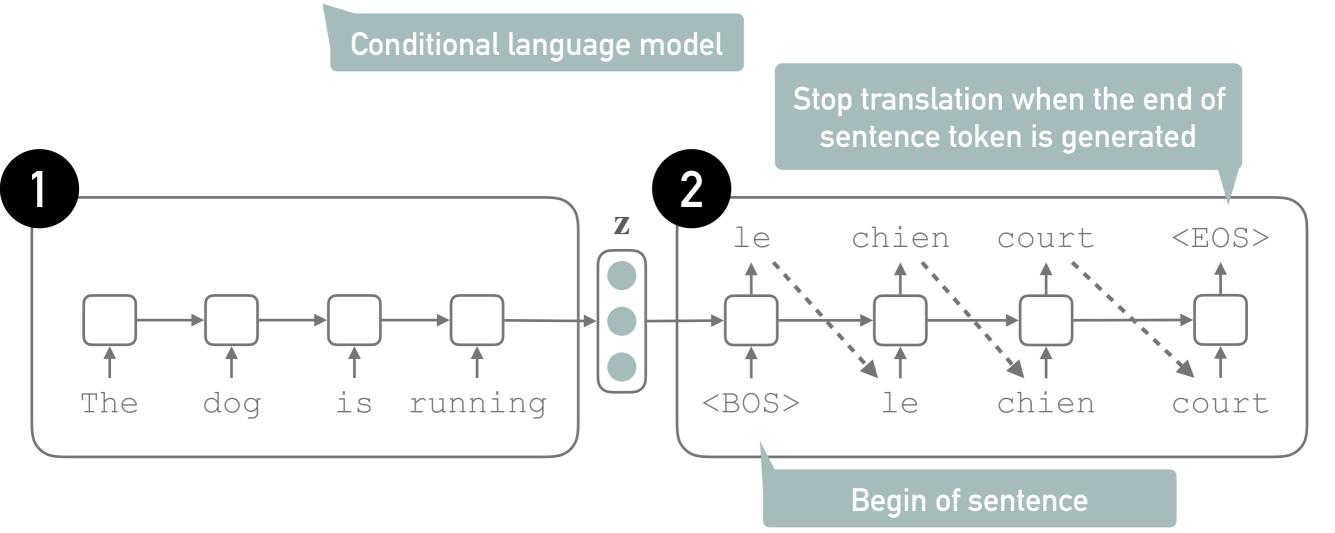
Neural architecture: Encoder-Decoder

- 1. <u>Encoder:</u> a recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. <u>Decoder:</u> a different recurrent neural network (RNN) compute the translation, word after word



Neural architecture: Encoder-Decoder

- 1. <u>Encoder:</u> a recurrent neural network (RNN) compute a context sensitive representation of the sentence
- 2. <u>Decoder:</u> a different recurrent neural network (RNN) compute the translation, word after word



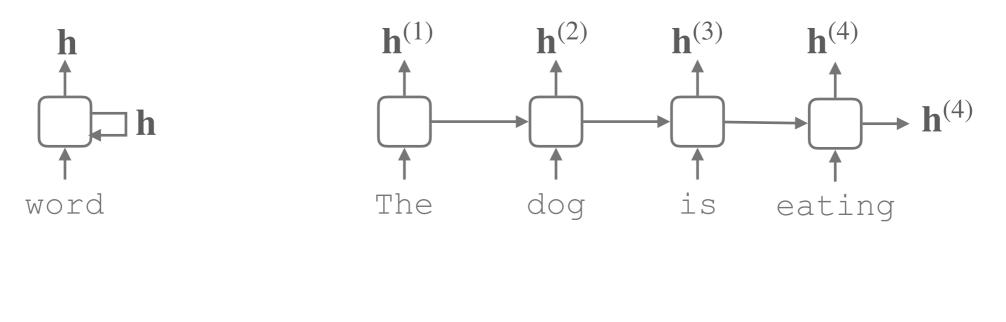
SIMPLE RECURRENT NEURAL NETWORK

MULTI-LAYER PERCEPTRON RECURRENT NETWORK

Multi-linear perceptron cell

- ► Input: the current word and the previous output
- Output: the hidden representation

The recurrent connection is juste the output at each position

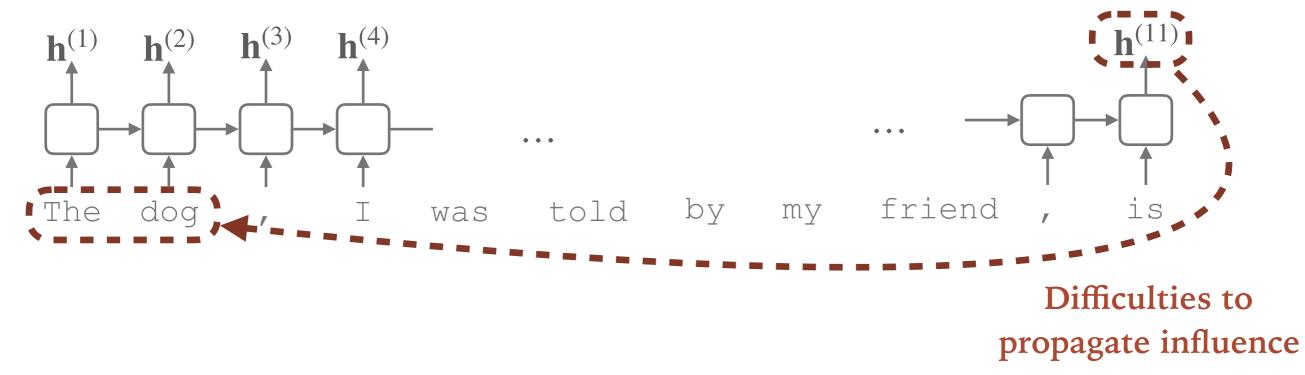


$$\mathbf{h}^{(n)} = \tanh\left(\mathbf{U}\begin{bmatrix}\mathbf{x}^{(n)}\\\mathbf{h}^{(n-1)}\end{bmatrix} + \mathbf{b}\right)$$

GRADIENT BASED LEARNING PROBLEM

Does it work?

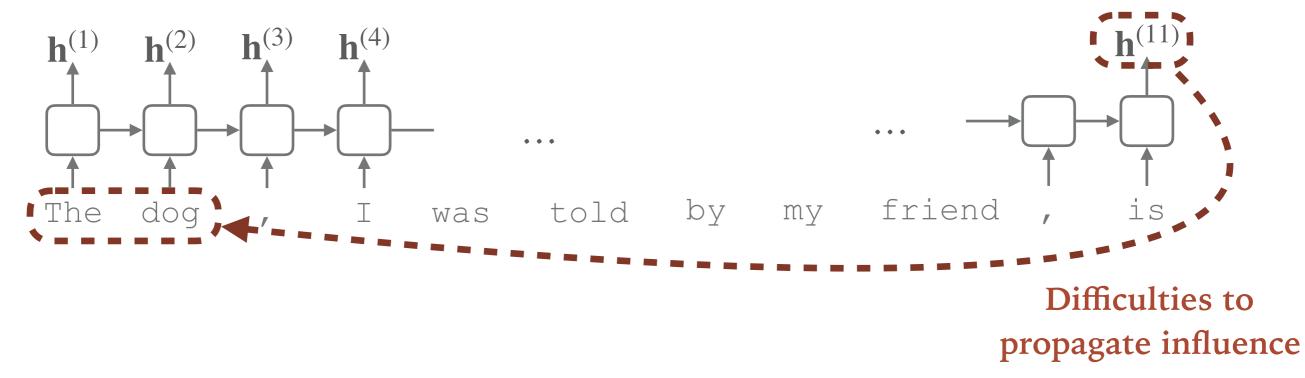
- ► In theory: yes
- ➤ In practice: no, gradient based learning of RNN fail to learn long range dependencies!



GRADIENT BASED LEARNING PROBLEM

Does it work?

- ► In theory: yes
- ► In practice: no, gradient based learning of RNN fail to learn long range dependencies!



Deep learning is not a « single tool fits all problem » solution

- ► You need to understand your data and prediction task
- ► You need to understand why a given neural architecture may fail for a given task
- ► You need to be able design tailored neural architectures for a given task

LONG SHORT-TERM MEMORY NETWORKS

LONG SHORT-TERM MEMORY NETWORKS (LSTM)

Intuition

Memory vector

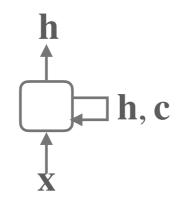
С

- Memory vector which is passed along the sequence
- ► At each time step, the network selects which cell of the memory to modify

The network can learn to keep track of long distance relationships

LSTM cell

► The recurrent connection pass the memory vector to the next cell



ERASING/WRITING VALUES IN A VECTOR

.

Erasing values in the memory

$$\begin{bmatrix} 3.02 \\ -4.11 \\ 21.00 \\ 4.44 \\ -6.9 \end{bmatrix} \implies \begin{bmatrix} 0 \\ 0 \\ 21.00 \\ 4.44 \\ -6.9 \end{bmatrix} < \text{Forget } \text{ the first two cells}$$

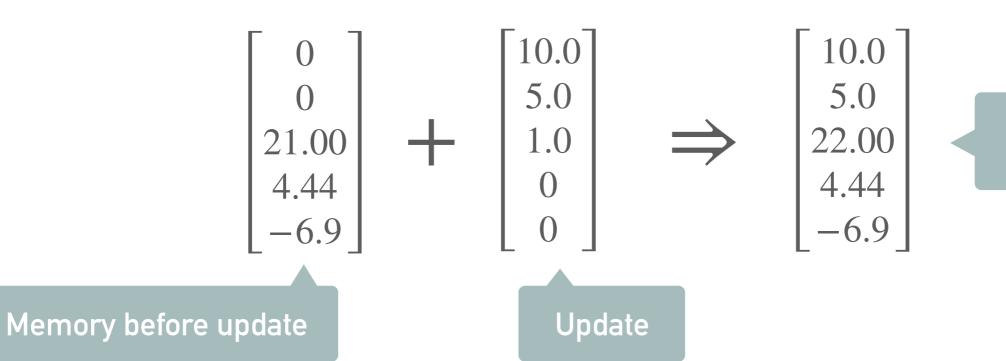
.

ERASING/WRITING VALUES IN A VECTOR

Erasing values in the memory

$$\begin{bmatrix} 3.02 \\ -4.11 \\ 21.00 \\ 4.44 \\ -6.9 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \\ 21.00 \\ 4.44 \\ -6.9 \end{bmatrix} < \text{Forget } \text{where first} \text{two cells}$$

Writing values in the memory



Memory after update

Erasing values in a vector

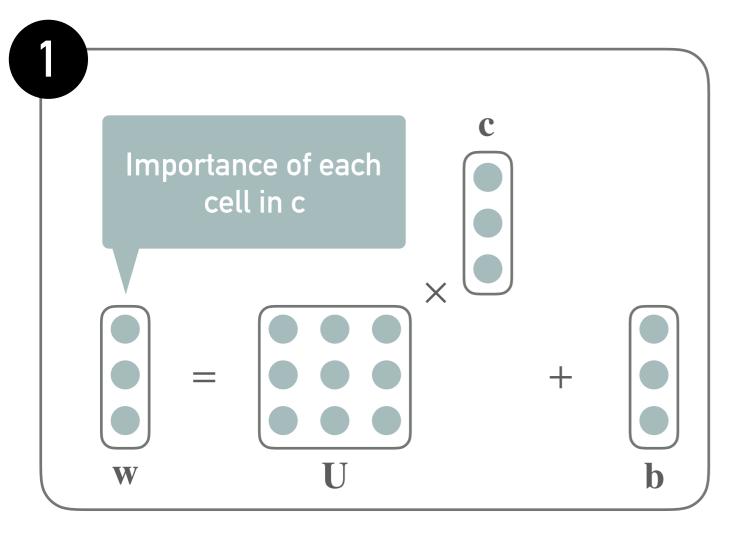
Let assume we want to remove some values from a vector **c**:

- 1. A simple linear classifier compute the importance of each value in c: $\mathbf{w} = \mathbf{U}\mathbf{c} + \mathbf{b}$
- 2. We erase non important value, i.e. values with a negative weight in **w**

Erasing values in a vector

Let assume we want to remove some values from a vector **c**:

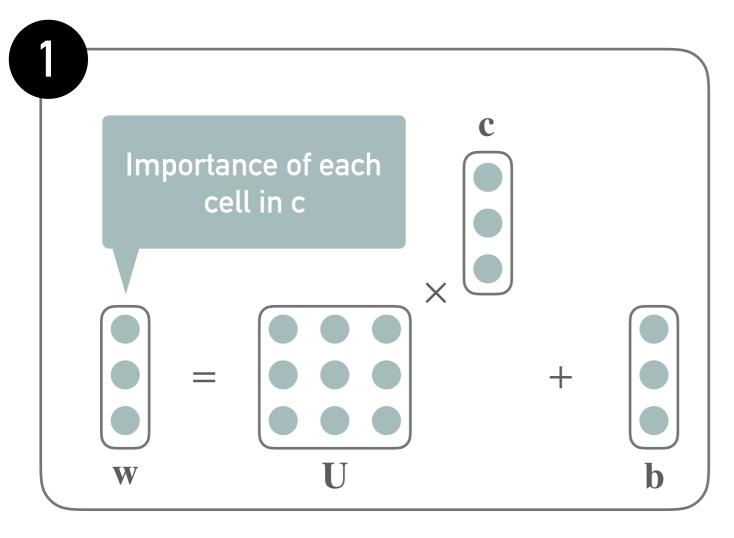
- 1. A simple linear classifier compute the importance of each value in c: $\mathbf{w} = \mathbf{U}\mathbf{\dot{c}} + \mathbf{b}$
- 2. We erase non important value, i.e. values with a negative weight in w



Erasing values in a vector

Let assume we want to remove some values from a vector **c**:

- 1. A simple linear classifier compute the importance of each value in c: $\mathbf{w} = \mathbf{U}\mathbf{\dot{c}} + \mathbf{b}$
- 2. We erase non important value, i.e. values with a negative weight in w

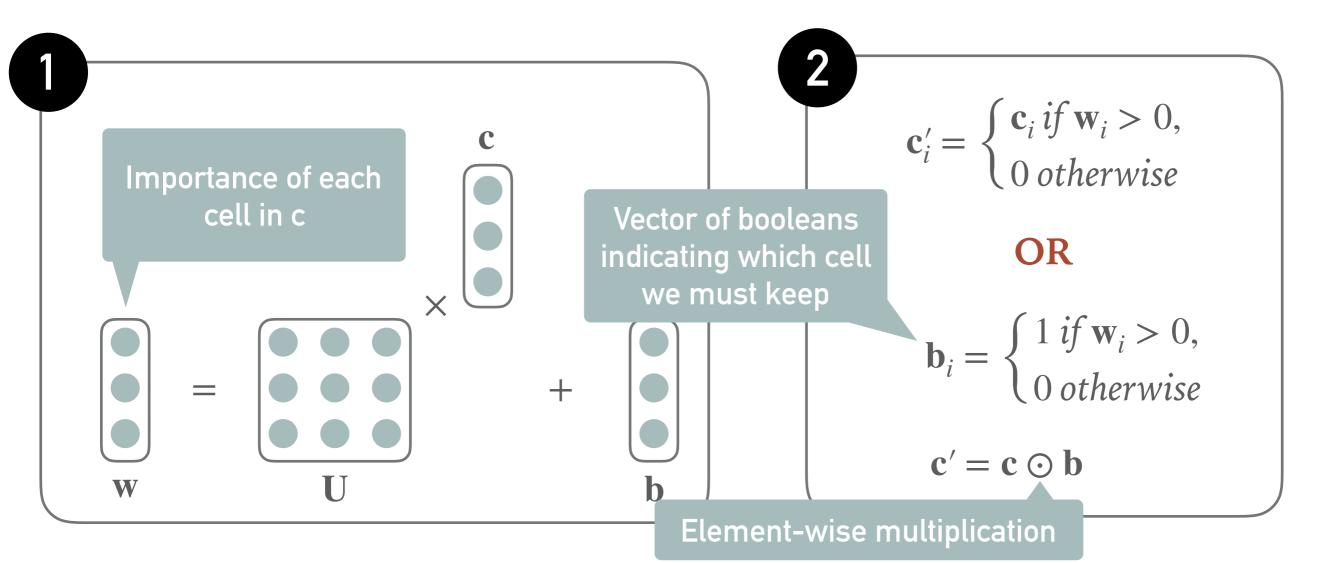


$$\mathbf{c}_{i}' = \begin{cases} \mathbf{c}_{i} \text{ if } \mathbf{w}_{i} > 0, \\ 0 \text{ otherwise} \end{cases}$$

Erasing values in a vector

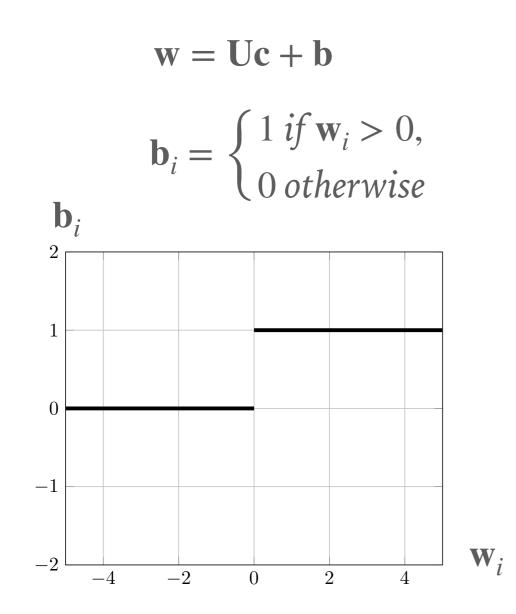
Let assume we want to remove some values from a vector **c**:

- 1. A simple linear classifier compute the importance of each value in c: $\mathbf{w} = \mathbf{U}\mathbf{\dot{c}} + \mathbf{b}$
- 2. We erase non important value, i.e. values with a negative weight in \mathbf{w}



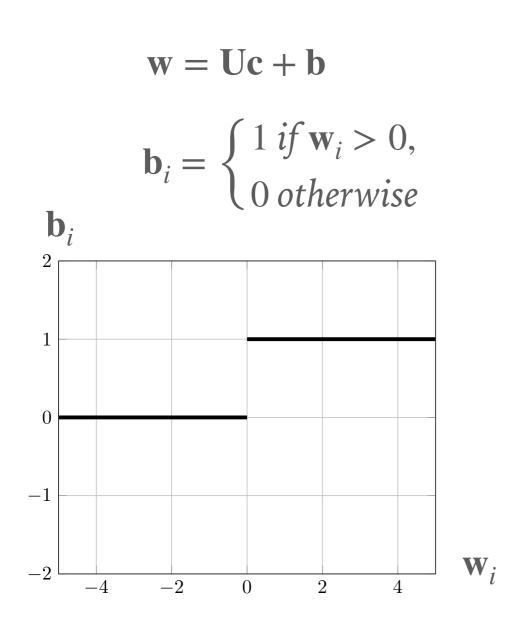
CELL SELECTION AND BACKPROPAGATION?

Forward pass

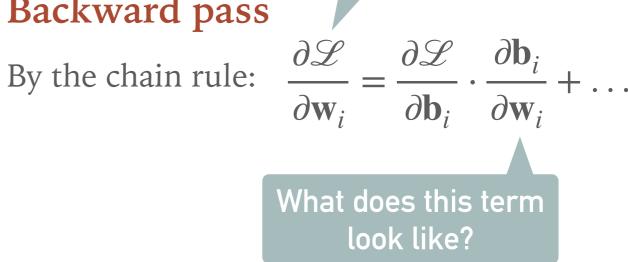


CELL SELECTION AND BACKPROPAGATION?

Forward pass

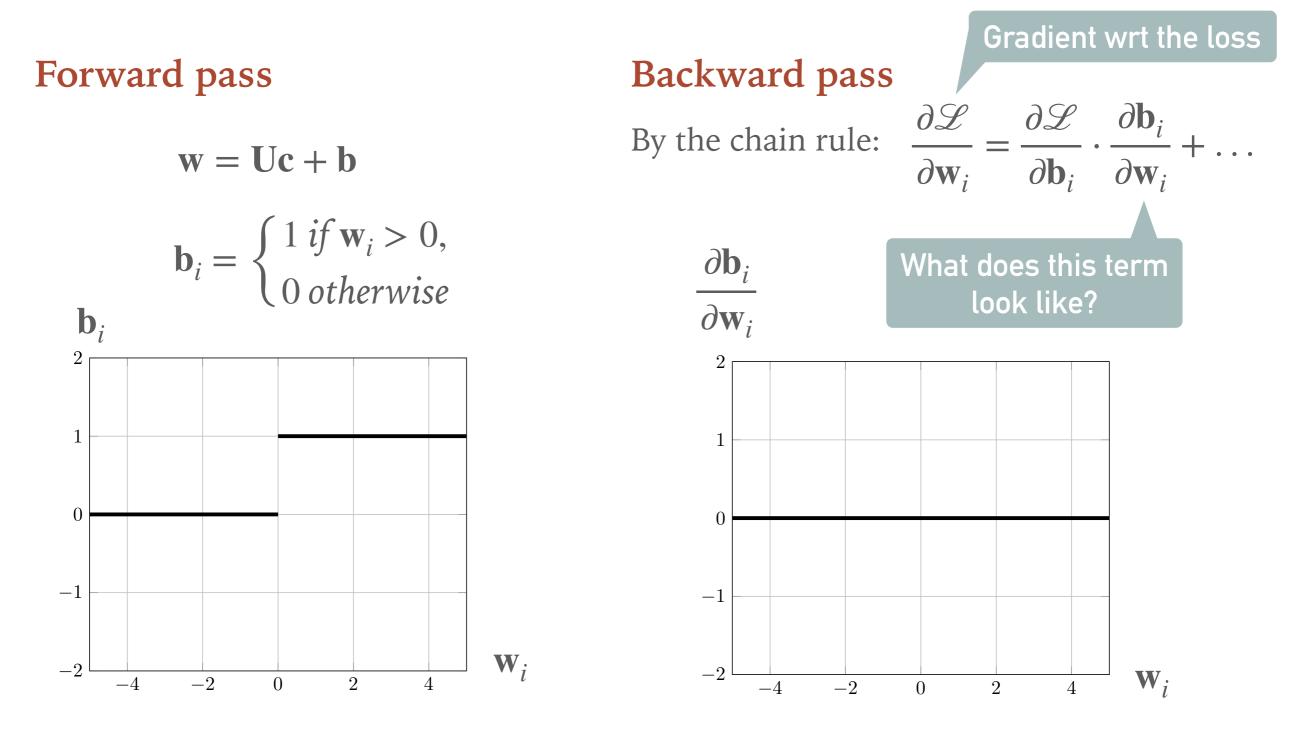


Backward pass



Gradient wrt the loss

CELL SELECTION AND BACKPROPAGATION?



Gradient is blocked! No information is back propagated!

Equivalent formulation as a small optimization problem

OR

$$\mathbf{b}_i = \begin{cases} 1 \text{ if } \mathbf{w}_i > 0, \\ 0 \text{ otherwise} \end{cases}$$

 $\mathbf{b}_i = \operatorname{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i$ $s.t. \quad \mathbf{y}_i \le 1$ $\mathbf{y}_i \ge 0$

.

SMOOTH SELECTION 1/2Equivalent formulation as a
small optimization problem $\mathbf{b}_i = \begin{cases} 1 \text{ if } \mathbf{w}_i > 0, \\ 0 \text{ otherwise} \end{cases}$ $\mathbf{b}_i = \operatorname{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i$
 $s.t. \quad \mathbf{y}_i \leq 1$
 $\mathbf{y}_i \geq 0$

Intuition

- At the optimal solution, one of the <u>constraint is tight</u>
 => small perturbation on W_i will not change the solution
- We can introduce a <u>penalty in the objective</u> so that <u>constraints are never tight</u> at the optimal solution

SMOOTH SELECTION 1/2 $\mathbf{b}_i = \begin{cases} 1 \text{ if } \mathbf{w}_i > 0, \\ 0 \text{ otherwise} \end{cases}$ Equivalent formulation as a small optimization problem $\mathbf{b}_i = \operatorname{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i \\ s.t. \quad \mathbf{y}_i \leq 1 \\ \mathbf{y}_i \geq 0 \end{cases}$

Intuition

- At the optimal solution, one of the <u>constraint is tight</u>
 => small perturbation on W_i will not change the solution
- We can introduce a <u>penalty in the objective</u> so that <u>constraints are never tight</u> at the optimal solution

$$\begin{split} \mathbf{b}_i &= \mathrm{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i - \Omega(\mathbf{y}_i) \\ &\text{s.t.} \quad \mathbf{y}_i \leq 1 \\ &\mathbf{y}_i \geq 0 \end{split} \\ \end{split}$$

 $\begin{aligned} \mathbf{b}_i &= \operatorname{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i - \Omega(\mathbf{y}_i) \\ &\text{s.t.} \quad \mathbf{y}_i \leq 1 \\ &\mathbf{y}_i \geq 0 \end{aligned}$

How to choose the convex regularizer?

- ► We need to solve the program quickly
- ► We need to be able to back propagate easily
- Several solutions
 (i.e. similar to interior point method)

 $\begin{aligned} \mathbf{b}_i &= \operatorname{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i - \Omega(\mathbf{y}_i) \\ &\text{s.t.} \quad \mathbf{y}_i \leq 1 \\ &\mathbf{y}_i \geq 0 \end{aligned}$

How to choose the convex regularizer?

- ► We need to solve the program quickly
- ► We need to be able to back propagate easily
- Several solutions
 (i.e. similar to interior point method)

Negative Fermi-Dirac entropy

$$\begin{aligned} \mathbf{b}_i &= \operatorname{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i - \mathbf{y}_i \log \mathbf{y}_i - (1 - \mathbf{y}_i) \log(1 - \mathbf{y}_i) \\ & s.t. \quad \mathbf{y}_i \leq 1 \\ & \mathbf{y}_i \geq 0 \end{aligned}$$

 $\begin{aligned} \mathbf{b}_i &= \operatorname{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i - \Omega(\mathbf{y}_i) \\ &\text{s.t.} \quad \mathbf{y}_i \leq 1 \\ &\mathbf{y}_i \geq 0 \end{aligned}$

How to choose the convex regularizer?

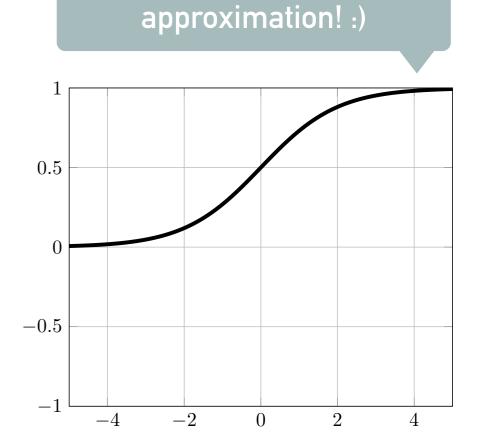
- ► We need to solve the program quickly
- ► We need to be able to back propagate easily
- Several solutions
 (i.e. similar to interior point method)

Negative Fermi-Dirac entropy

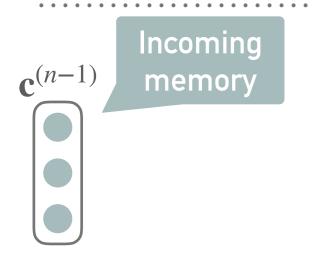
$$\begin{aligned} \mathbf{b}_i &= \operatorname{argmax}_{\mathbf{y}_i} \quad \mathbf{y}_i \times \mathbf{w}_i - \mathbf{y}_i \log \mathbf{y}_i - (1 - \mathbf{y}_i) \log(1 - \mathbf{y}_i) \\ &\text{s.t.} \quad \mathbf{y}_i \leq 1 \\ &\mathbf{y}_i \geq 0 \end{aligned}$$

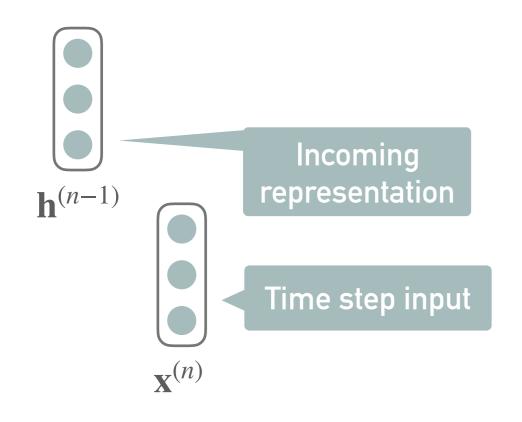
This is actually the sigmoid (solve the KKT condition to see that)

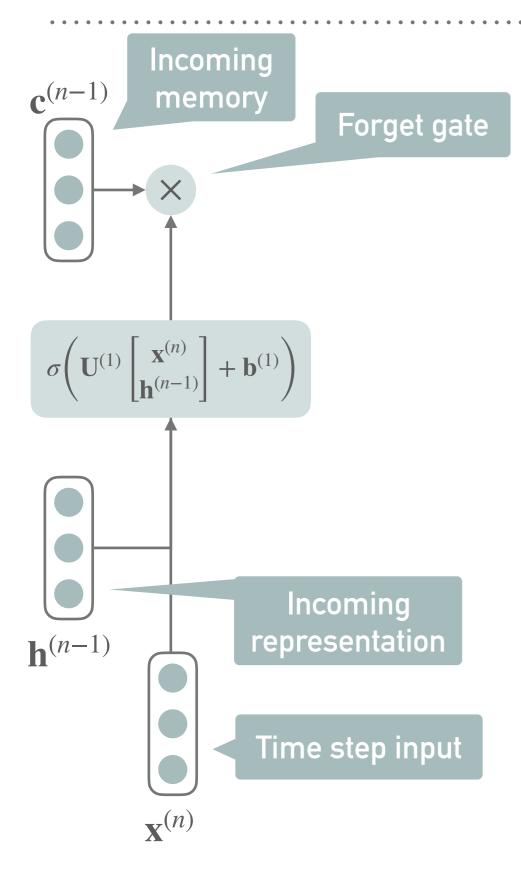
$$\mathbf{b}_i = \frac{1}{(1 + exp(-\mathbf{w}_i))} = \sigma(\mathbf{w}_i)$$

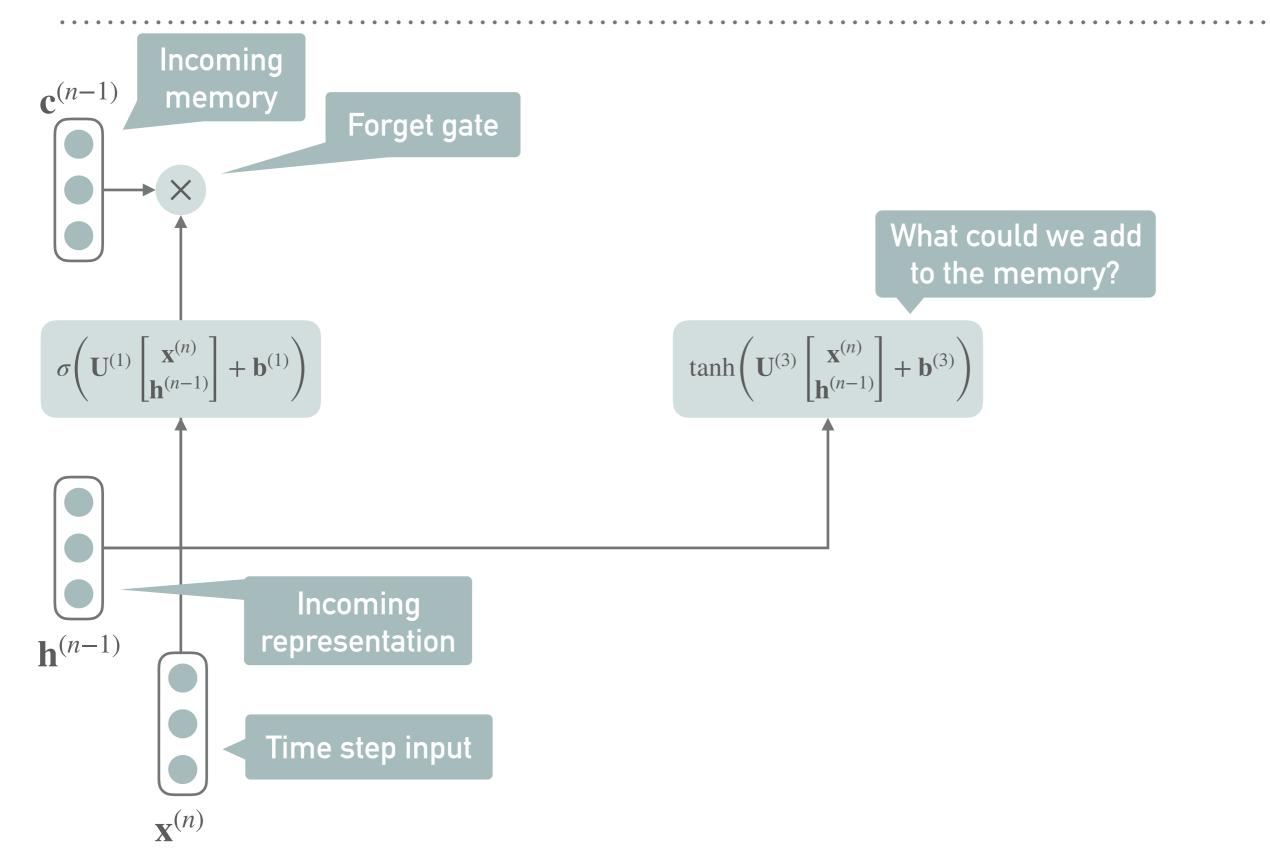


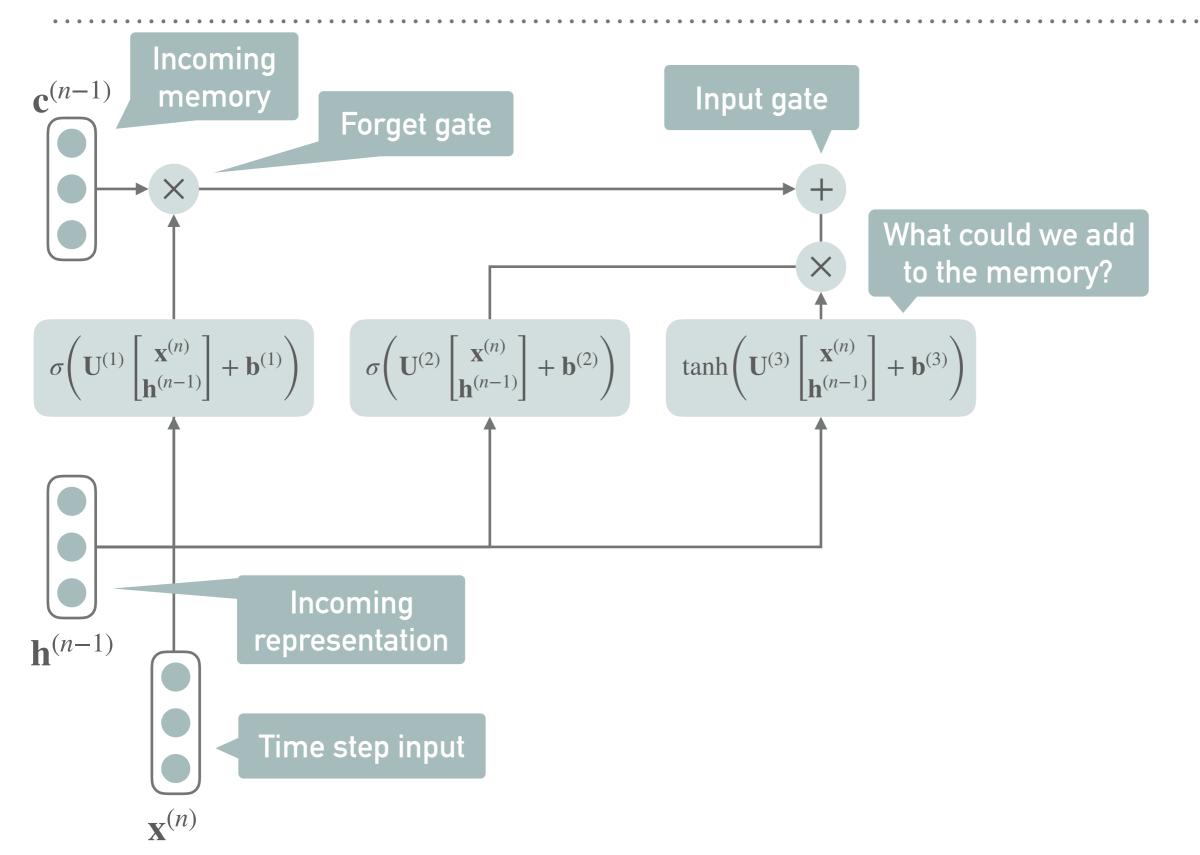
Smooth and differentiable

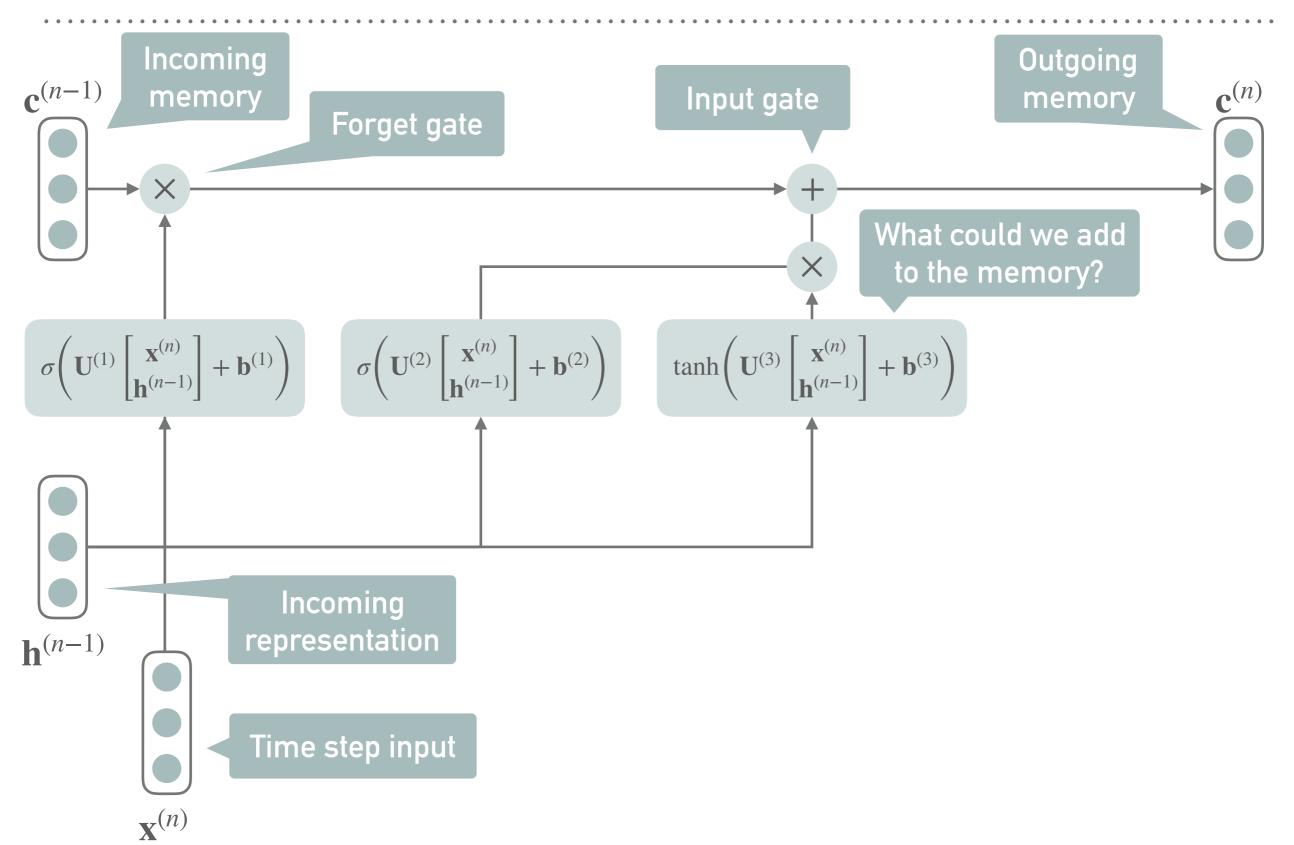


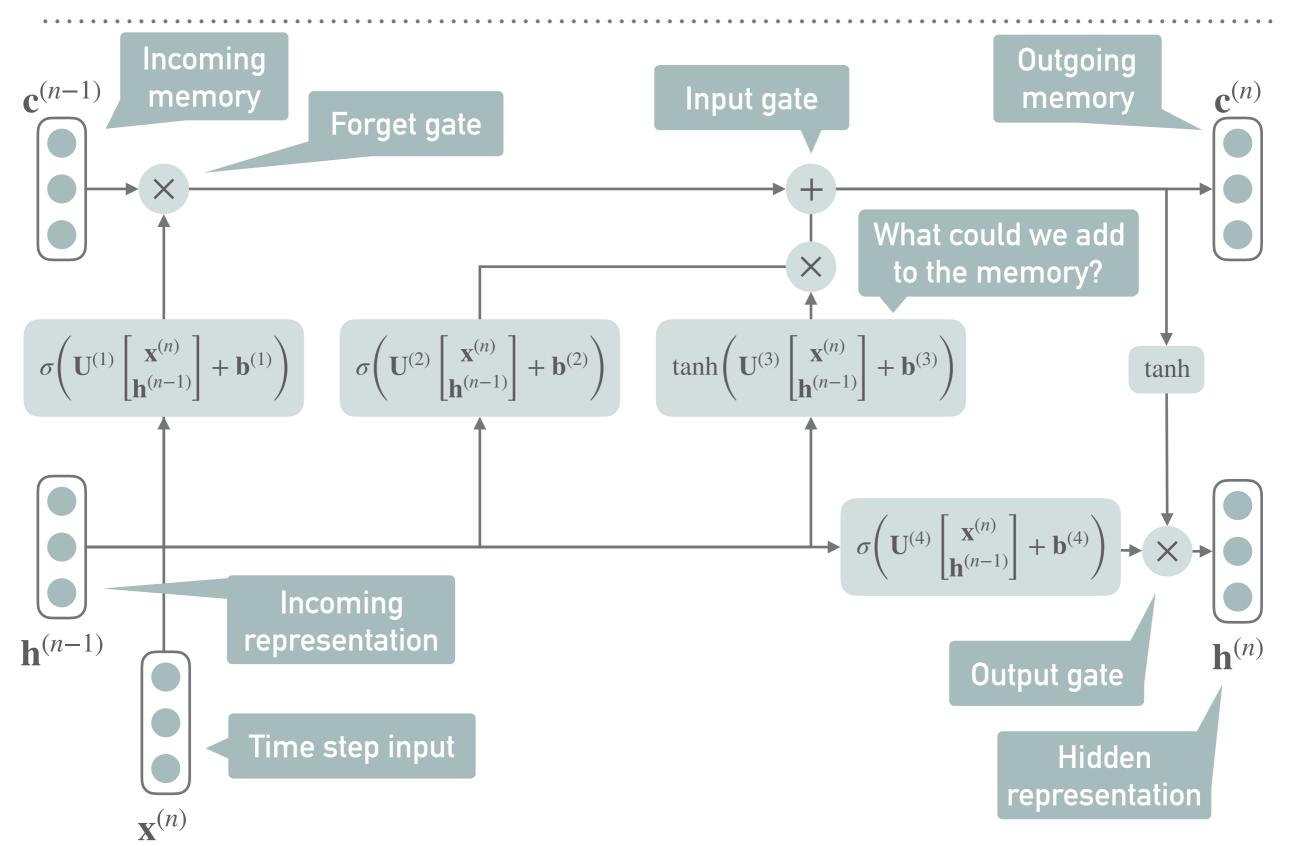










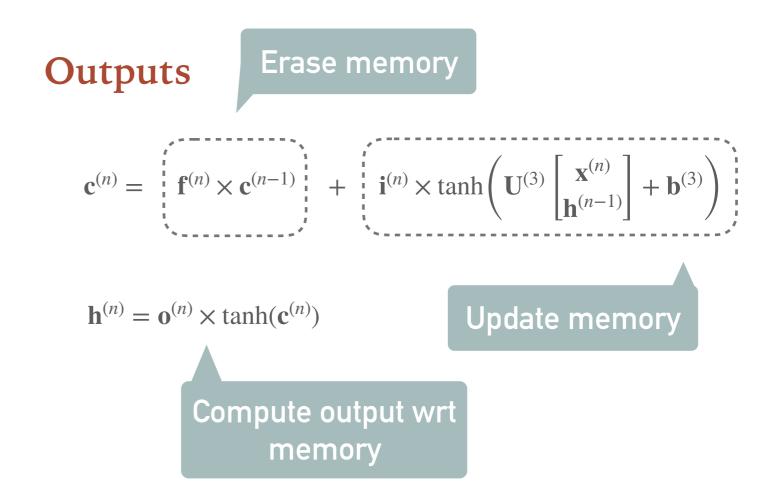


Gates

$$\mathbf{f}^{(n)} = \sigma \left(\mathbf{U}^{(1)} \begin{bmatrix} \mathbf{x}^{(n)} \\ \mathbf{h}^{(n-1)} \end{bmatrix} + \mathbf{b}^{(1)} \right)$$

$$\mathbf{i}^{(n)} = \sigma \left(\mathbf{U}^{(2)} \begin{bmatrix} \mathbf{x}^{(n)} \\ \mathbf{h}^{(n-1)} \end{bmatrix} + \mathbf{b}^{(2)} \right)$$

$$\mathbf{o}^{(n)} = \sigma \left(\mathbf{U}^{(4)} \begin{bmatrix} \mathbf{x}^{(n)} \\ \mathbf{h}^{(n-1)} \end{bmatrix} + \mathbf{b}^{(4)} \right)$$



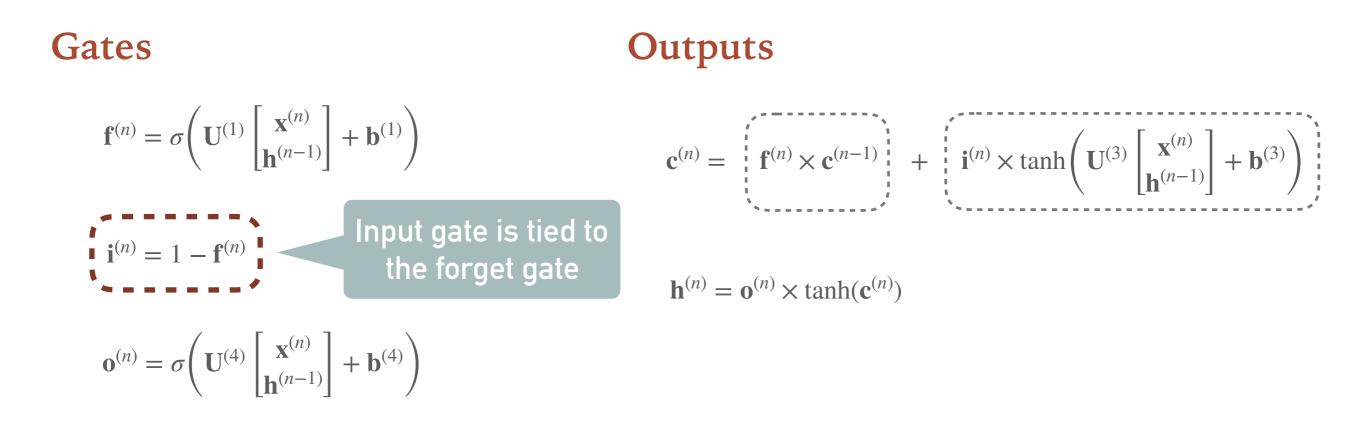
Number of parameters

4 times more parameters than a simple recurrent neural network!

LSTM VARIANT: COUPLED FORGET AND INPUT GATES

Intuition

- ► Tie forget and input gates
- ► Each memory cell is either kept as it or replaced by a new value



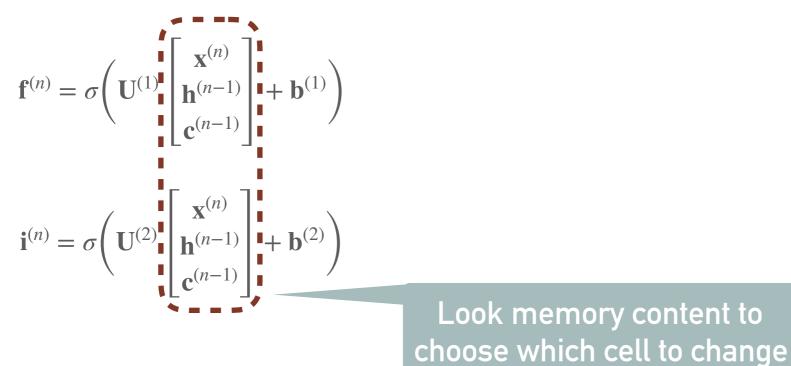
Intuition

- ► In standard LSTMs, gates <u>are not dependent</u> on the memory state
- ► In peephole LSTMs, gates <u>depend</u> on the memory

Intuition

- ► In standard LSTMs, gates <u>are not dependent</u> on the memory state
- ► In peephole LSTMs, gates <u>depend</u> on the memory

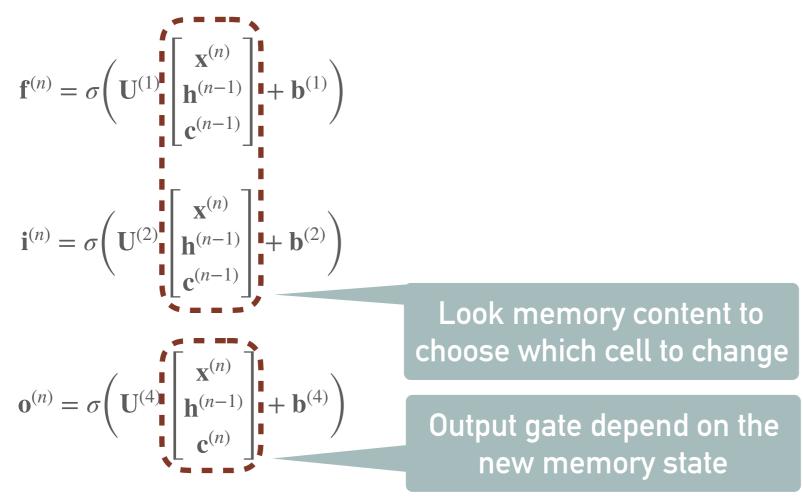
Gates



Intuition

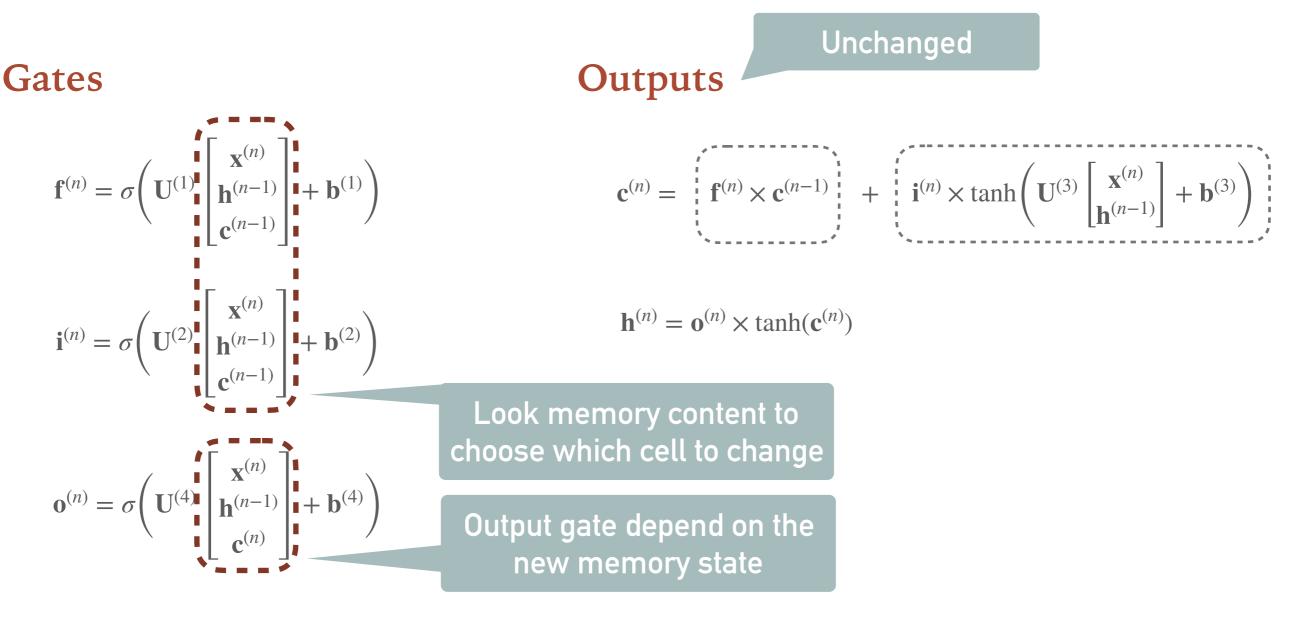
- ► In standard LSTMs, gates <u>are not dependent</u> on the memory state
- ► In peephole LSTMs, gates <u>depend</u> on the memory

Gates



Intuition

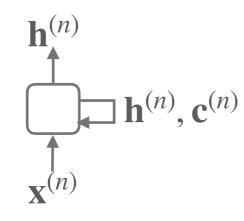
- ► In standard LSTMs, gates <u>are not dependent</u> on the memory state
- ► In peephole LSTMs, gates <u>depend</u> on the memory

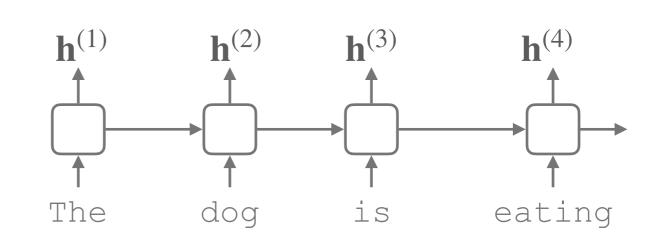


RNN-BASED ARCHITECTURES

MULTI-LAYER RNN

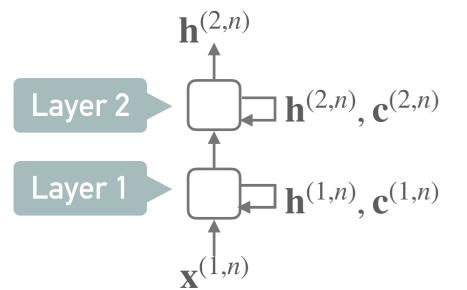
RNN with one layer

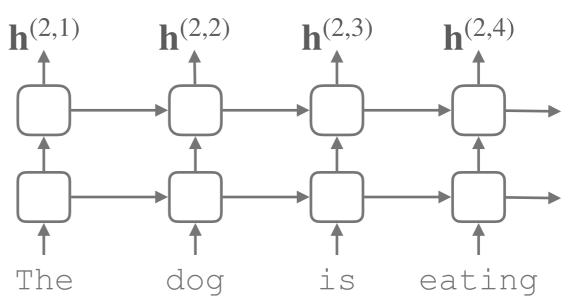




RNN with two layers

- ► Each layer as it own set of trainable parameters
- ► The recurrent connection is layer-dependent
- > The input of layer n > 1 is the hidden representation at layer n





TAGGING WITH LSTMS

.

PRP	VB	DET	NN
They	walk	the	dog

Part-of-speech tagging Named entity recognition

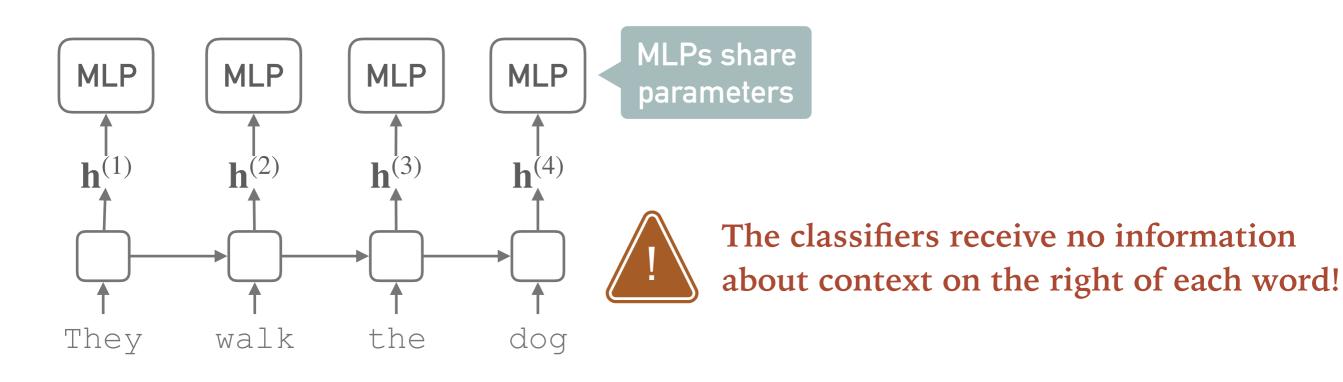
B-Per	I-Per	0	0	B-Loc
Neil	Armstrong	visited	the	moon

TAGGING WITH LSTMS

Part-of-speech tagging		Name	Named entity recognition					
PRP	VB	DET	NN	B-Per	I-Per	0	0	B-Loc
They	walk	the	dog	Neil	Armstrong	visited	the	moon

Neural architecture

- 1. A RNN computes a context sensitive representation of each word
- 2. At each time step, the output of the RNN if fed to a MLP for classification



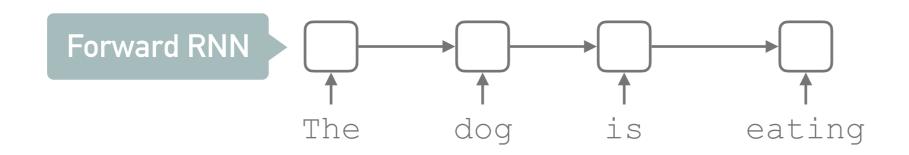
Intuition

.

- ► Forward RNN: visit the sentence from left to right
- ► Backward RNN: visit the sentence from right to left

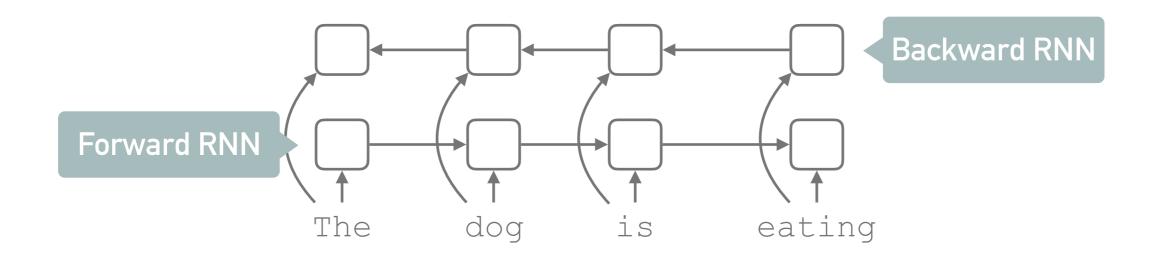
Intuition

- ► Forward RNN: visit the sentence from left to right
- ► Backward RNN: visit the sentence from right to left



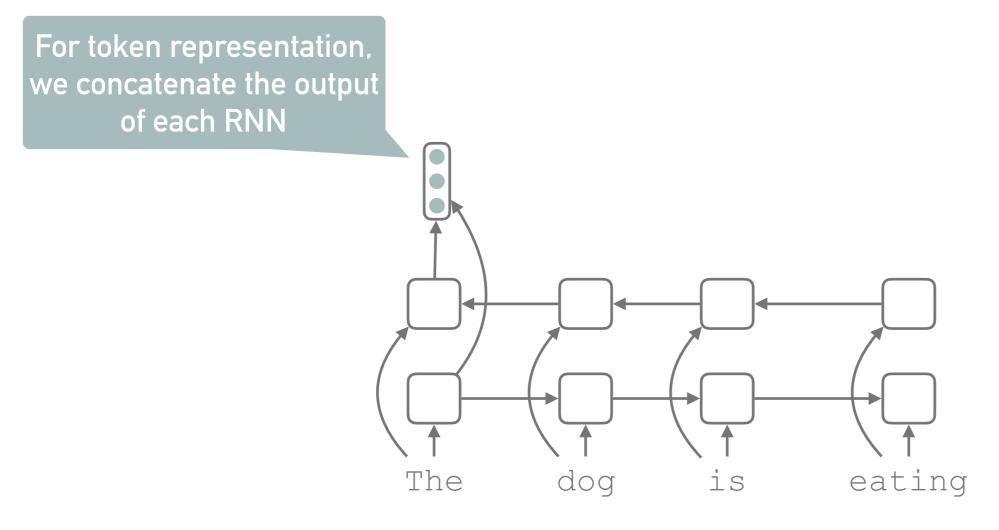
Intuition

- ► Forward RNN: visit the sentence from left to right
- ► Backward RNN: visit the sentence from right to left



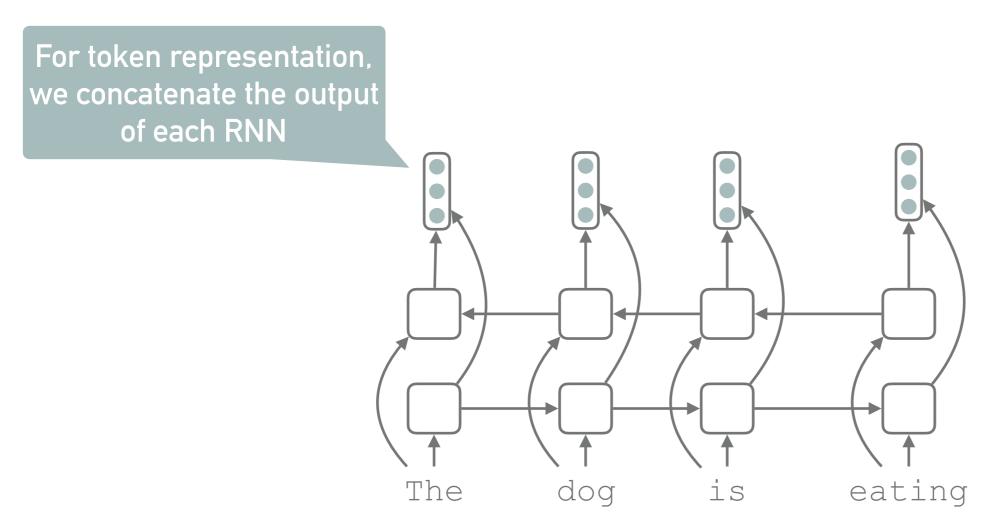
Intuition

- ► Forward RNN: visit the sentence from left to right
- ► Backward RNN: visit the sentence from right to left



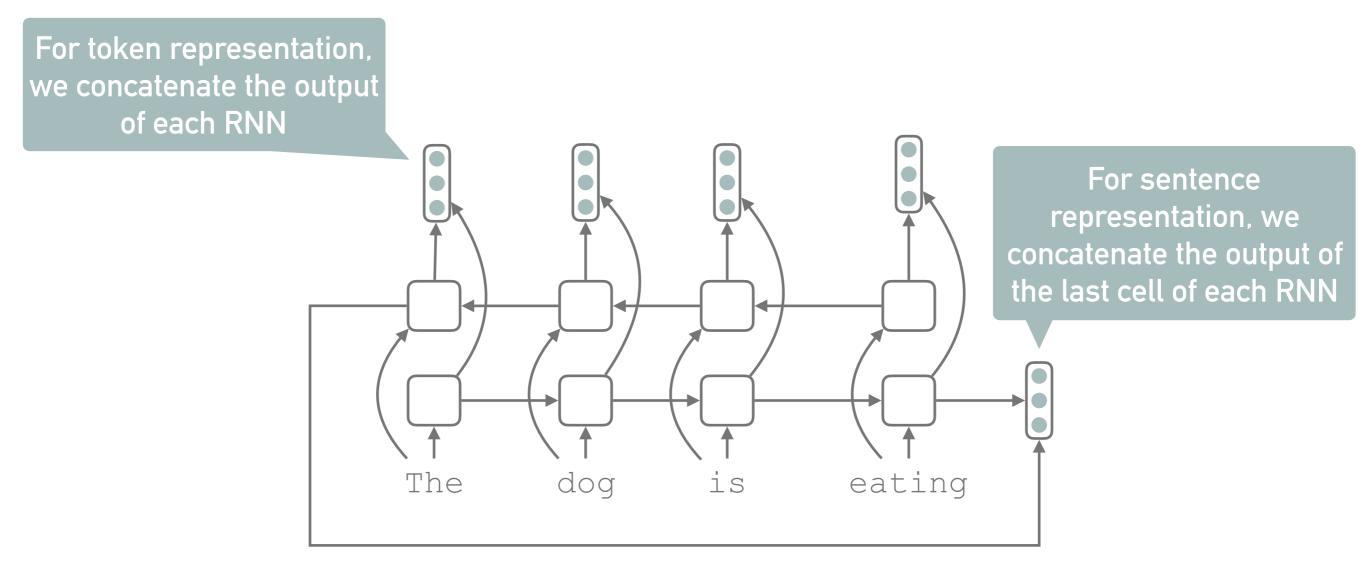
Intuition

- ► Forward RNN: visit the sentence from left to right
- ► Backward RNN: visit the sentence from right to left



Intuition

- Forward RNN: visit the sentence from left to right
- Backward RNN: visit the sentence from right to left



MULTI-STACK BIRNN

.

Intuition

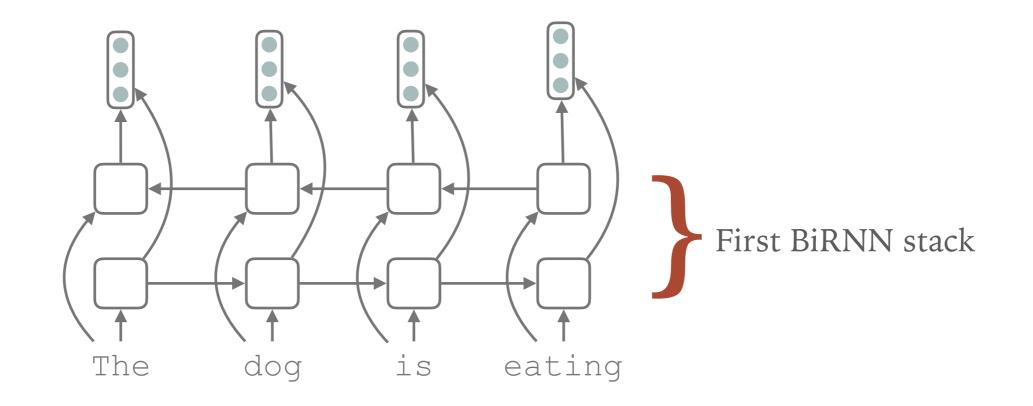
. .

Multi-layer RNNs have information only about previous words

MULTI-STACK BIRNN

Intuition

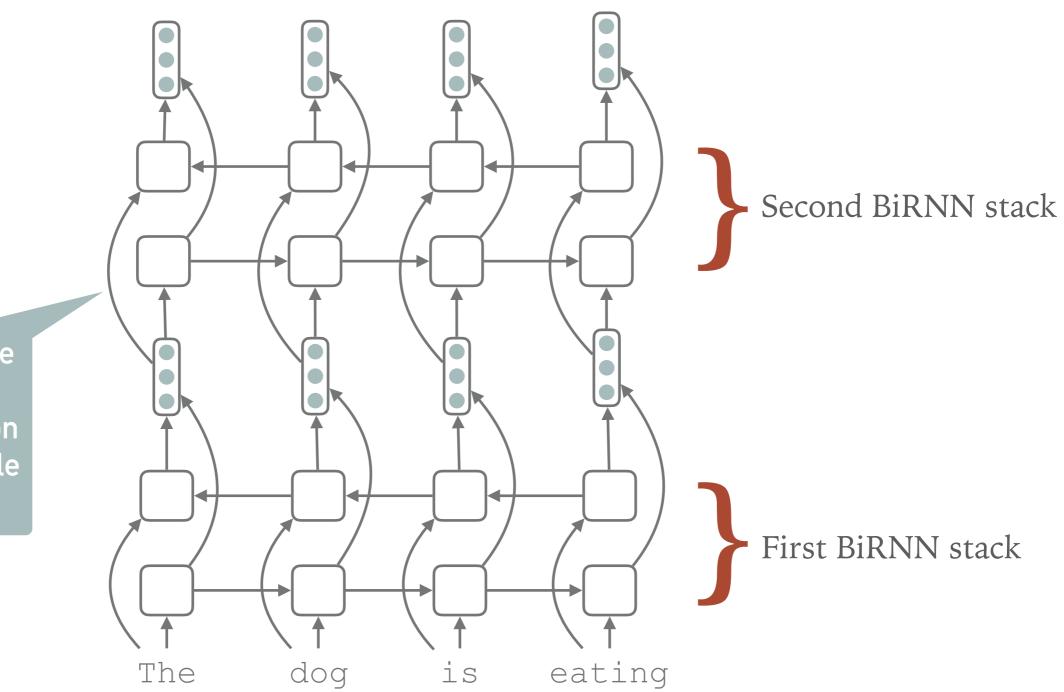
Multi-layer RNNs have information only about previous words



MULTI-STACK BIRNN

Intuition

Multi-layer RNNs have information only about previous words



Each cell in the second stack has information about the whole sentence!