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LECTURE 1 RECALL

Language modeling with a multi-layer perceptron

2nd order Markov chain: p(y1, . . . , yn) = p(y1) p(y2 |y1)
n

∏
i=3

p(yi |yi−1, yi−2)

z = σ (U(1)x + b(1))x = [
Embedding of yi−1

Embedding of yi−2] w = U(2)z + b(2)

Concatenate the 
embeddings of the two 

previous words

Hidden 
representation

Probability 
distribution

Output 
projection

p(yi |yi−1, yi−2) =
exp(wyi

)
∑y′￼exp(wy′￼)
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2nd order Markov chain: p(y1, . . . , yn) = p(y1) p(y2 |y1)
n

∏
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p(yi |yi−1, yi−2)

z = σ (U(1)x + b(1))x = [
Embedding of yi−1

Embedding of yi−2] w = U(2)z + b(2) p(yi |yi−1, yi−2) =
exp(wyi

)
∑y′￼exp(wy′￼)

Sentence classification with a Convolutional Neural Network

1. Convolution: sliding window of fixed size of the input sentence


2. Mean/max pooling over convolution outputs


3. Multi-linear perceptron

Main issue

➤ These 2 networks only use local word-order information


➤ No long range dependencies
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➤ Inputs are fed sequentially


➤ State representation updated at each input

The dog is eating
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LONG RANGE DEPENDENCIES

Recurrent neural networks

➤ Inputs are fed sequentially


➤ State representation updated at each input

Attention network

➤ Inputs contain position information


➤ At each position look at any input in the sentence

Next time!

The dog is eating

The.1 dog.2 is.3 eating.4

Today
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RECURRENT NEURAL NETWORK

The dog is eating

h(4)h(3)h(2)h(1)

h(n)

x(n)

h(n)

x(n)

r(n−1) r(n)

Input

Output

Incoming recurrent 
connection

Outgoing recurrent 
connection

Recurrent neural network cell

Dynamic neural network

All cells share the 
same parameters



LANGUAGE MODEL
Why do we usually make independence assumptions?

➤ Less parameters to learn


➤ Less sparsity

➤ 2nd order Markov chain: p(y1, . . . , yn) = p(y1) p(y2 |y1)
n

∏
i=3

p(yi |yi−1, yi−2)

p(y1, . . . , yn) = p(y1)
n

∏
i=2

p(yi |yi−1)➤ 1st order Markov chain:

|V | × |V |  parameters

|V | × |V | × |V |  parameters

Non neural language model

Multi-layer perceptron language model

➤ No sparsity issue thanks to word embeddings


➤ Independence assumption, so no long range dependencies



LANGUAGE MODEL WITH RECURRENT NEURAL NETWORKS
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No independence 
assumption!
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LANGUAGE MODEL WITH RECURRENT NEURAL NETWORKS

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)

No independence 
assumption!

<BOS>

p(y1)

The<BOS>

p(y2 |y1)

The dog<BOS>

p(y3 |y1, y2)

The dog is<BOS>

p(y4 |y1, y2, y3)
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Neural architecture

1. A recurrent neural network (RNN) compute a context sensitive representation of 

the sentence


2. A multi-layer perceptron takes as input this representation and output class weights
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SENTENCE CLASSIFICATION

Neural architecture

1. A recurrent neural network (RNN) compute a context sensitive representation of 

the sentence


2. A multi-layer perceptron takes as input this representation and output class weights

The dog is eating

z(1)

Context sensitive 
representation

1

z(2) = σ (U(1)z(1) + b(1))
w = U(2)z(2) + b(2)

Output weights

MLP hidden layer
2



MACHINE TRANSLATION

Neural architecture: Encoder-Decoder

1. Encoder: a recurrent neural network (RNN) compute a context sensitive 

representation of the sentence


2. Decoder: a different recurrent neural network (RNN) compute the translation, 
word after word

Conditional language model
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Neural architecture: Encoder-Decoder

1. Encoder: a recurrent neural network (RNN) compute a context sensitive 

representation of the sentence
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MACHINE TRANSLATION

The dog is running

z

<BOS>

Neural architecture: Encoder-Decoder

1. Encoder: a recurrent neural network (RNN) compute a context sensitive 

representation of the sentence


2. Decoder: a different recurrent neural network (RNN) compute the translation, 
word after word

Conditional language model

le
1 2
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The dog is running

z

<BOS> le

Neural architecture: Encoder-Decoder

1. Encoder: a recurrent neural network (RNN) compute a context sensitive 

representation of the sentence


2. Decoder: a different recurrent neural network (RNN) compute the translation, 
word after word

Conditional language model

le chien
1 2

Begin of sentence



MACHINE TRANSLATION

The dog is running

z

<BOS> le chien

Neural architecture: Encoder-Decoder

1. Encoder: a recurrent neural network (RNN) compute a context sensitive 

representation of the sentence


2. Decoder: a different recurrent neural network (RNN) compute the translation, 
word after word

Conditional language model

le chien court
1 2

Begin of sentence



MACHINE TRANSLATION

The dog is running

z

<BOS> le chien court

Neural architecture: Encoder-Decoder

1. Encoder: a recurrent neural network (RNN) compute a context sensitive 

representation of the sentence


2. Decoder: a different recurrent neural network (RNN) compute the translation, 
word after word

Conditional language model

le chien court <EOS>
1 2

Begin of sentence

Stop translation when the end of 
sentence token is generated



SIMPLE RECURRENT 
NEURAL NETWORK



MULTI-LAYER PERCEPTRON RECURRENT NETWORK

The dog is eating

h(4)h(3)h(2)h(1)

h(4)

h(n) = tanh(U [ x(n)

h(n−1)] + b)

word

h

h

Multi-linear perceptron cell

➤ Input: the current word and the previous output


➤ Output: the hidden representation


The recurrent connection is juste the output at each position



GRADIENT BASED LEARNING PROBLEM
Does it work?

➤ In theory: yes


➤ In practice: no, gradient based learning of RNN fail to learn long range dependencies!

The dog , I

h(4)h(3)h(2)h(1)

was told by my friend is,

… …

h(11)

Difficulties to 
propagate influence



GRADIENT BASED LEARNING PROBLEM
Does it work?

➤ In theory: yes


➤ In practice: no, gradient based learning of RNN fail to learn long range dependencies!

Deep learning is not a « single tool fits all problem » solution

➤ You need to understand your data and prediction task


➤ You need to understand why a given neural architecture may fail for a given task


➤ You need to be able design tailored neural architectures for a given task

The dog , I

h(4)h(3)h(2)h(1)

was told by my friend is,

… …

h(11)

Difficulties to 
propagate influence



LONG SHORT-TERM 
MEMORY NETWORKS



LONG SHORT-TERM MEMORY NETWORKS (LSTM)

Intuition

➤ Memory vector which is passed along the sequence


➤ At each time step, the network selects which cell of the memory to modify

The network can learn to keep track of 
long distance relationships

cMemory vector

LSTM cell

➤ The recurrent connection pass the memory vector to the next cell

h

h, c

x



ERASING/WRITING VALUES IN A VECTOR

Erasing values in the memory

⇒
3.02

−4.11
21.00
4.44
−6.9

0
0

21.00
4.44
−6.9

« Forget » the first 
two cells



ERASING/WRITING VALUES IN A VECTOR

Erasing values in the memory

⇒
3.02

−4.11
21.00
4.44
−6.9

0
0

21.00
4.44
−6.9

« Forget » the first 
two cells

Writing values in the memory

Memory after 
update⇒

0
0

21.00
4.44
−6.9

10.0
5.0
1.0
0
0

10.0
5.0

22.00
4.44
−6.9

+

Memory before update Update



GATE MECHANISM

Erasing values in a vector

Let assume we want to remove some values from a vector c:


1. A simple linear classifier compute the importance of each value in c:


2. We erase non important value, i.e. values with a negative weight in w

w = Uc + b

Not necessarily c, it can 
depends on anything
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Let assume we want to remove some values from a vector c:


1. A simple linear classifier compute the importance of each value in c:


2. We erase non important value, i.e. values with a negative weight in w

w = Uc + b

c′￼i = {ci if wi > 0,
0 otherwise
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GATE MECHANISM

= +

×

w U b

c

Erasing values in a vector

Let assume we want to remove some values from a vector c:


1. A simple linear classifier compute the importance of each value in c:


2. We erase non important value, i.e. values with a negative weight in w

w = Uc + b

c′￼i = {ci if wi > 0,
0 otherwise

1

bi = {1 if wi > 0,
0 otherwise

c′￼= c ⊙ b

2

OR
Vector of booleans 

indicating which cell 
we must keep

Importance of each 
cell in c

Not necessarily c, it can 
depends on anything

Element-wise multiplication



CELL SELECTION AND BACKPROPAGATION?

w = Uc + b

Forward pass

�4 �2 0 2 4
�2

�1

0

1

2

wi

bi

bi = {1 if wi > 0,
0 otherwise
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w = Uc + b

Forward pass Backward pass

By the chain rule: ∂ℒ

∂wi
=

∂ℒ
∂bi

⋅
∂bi

∂wi
+ . . .

�4 �2 0 2 4
�2

�1

0

1

2

wi

bi

What does this term 
look like?

Gradient wrt the loss 

bi = {1 if wi > 0,
0 otherwise



CELL SELECTION AND BACKPROPAGATION?

w = Uc + b

Forward pass Backward pass

By the chain rule: ∂ℒ

∂wi
=

∂ℒ
∂bi

⋅
∂bi

∂wi
+ . . .

∂bi

∂wi

�4 �2 0 2 4
�2

�1

0

1

2

wi�4 �2 0 2 4
�2

�1

0

1

2

wi

bi

What does this term 
look like?

Gradient wrt the loss 

Gradient is blocked! 
No information is back propagated!!

bi = {1 if wi > 0,
0 otherwise
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=> small perturbation on        will not change the solution


➤ We can introduce a penalty in the objective so that constraints are never tight 
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SMOOTH SELECTION 1/2

bi = {1 if wi > 0,
0 otherwise

bi = argmaxyi
yi × wi

s.t. yi ≤ 1
OR

Equivalent formulation as a 
small optimization problem

yi ≥ 0
Intuition

➤ At the optimal solution, one of the constraint is tight 

=> small perturbation on        will not change the solution


➤ We can introduce a penalty in the objective so that constraints are never tight 
at the optimal solution

wi

bi = argmaxyi
yi × wi − Ω(yi)

s.t. yi ≤ 1

yi ≥ 0

Strong convex regularizer



SMOOTH SELECTION 1/2

bi = argmaxyi
yi × wi − Ω(yi)

s.t. yi ≤ 1

yi ≥ 0

How to choose the convex regularizer?

➤ We need to solve the program quickly


➤ We need to be able to back propagate easily


➤ Several solutions 
(i.e. similar to interior point method)
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SMOOTH SELECTION 1/2

bi = argmaxyi
yi × wi − Ω(yi)

s.t. yi ≤ 1

yi ≥ 0

How to choose the convex regularizer?

➤ We need to solve the program quickly


➤ We need to be able to back propagate easily


➤ Several solutions 
(i.e. similar to interior point method)

bi = argmaxyi
yi × wi − yi log yi − (1 − yi)log(1 − yi)

s.t. yi ≤ 1

yi ≥ 0

Negative Fermi-Dirac entropy

�4 �2 0 2 4
�1

�0.5

0

0.5

1

bi =
1

(1 + exp(−wi))
= σ(wi)

This is actually the sigmoid 
(solve the KKT condition to see that)

Smooth and differentiable 
approximation! :)
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c(n−1)

h(n−1)

x(n)
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h(n−1)

x(n)

×
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LSTM CELL 1/2

c(n−1)

h(n−1)

x(n)

×

σ(U(1) [ x(n)

h(n−1)] + b(1)) σ(U(2) [ x(n)

h(n−1)] + b(2)) tanh(U(3) [ x(n)

h(n−1)] + b(3))

σ(U(4) [ x(n)

h(n−1)] + b(4))

×

+

c(n)

h(n)

×

Forget gate

tanh

Input gate

What could we add 
to the memory?

Output gate

Time step input

Incoming 
memory

Incoming 
representation

Outgoing 
memory

Hidden 
representation



LSTM CELL 2/2

f(n) = σ(U(1) [ x(n)

h(n−1)] + b(1))

i(n) = σ(U(2) [ x(n)

h(n−1)] + b(2))

o(n) = σ(U(4) [ x(n)

h(n−1)] + b(4))

h(n) = o(n) × tanh(c(n))

c(n) = f(n) × c(n−1) + i(n) × tanh(U(3) [ x(n)

h(n−1)] + b(3))

Gates Outputs

Number of parameters

4 times more parameters than a simple recurrent neural network!

Erase memory

Update memory

Compute output wrt 
memory



LSTM VARIANT: COUPLED FORGET AND INPUT GATES

f(n) = σ(U(1) [ x(n)

h(n−1)] + b(1))
i(n) = 1 − f(n)

o(n) = σ(U(4) [ x(n)

h(n−1)] + b(4))
h(n) = o(n) × tanh(c(n))

c(n) = f(n) × c(n−1) + i(n) × tanh(U(3) [ x(n)

h(n−1)] + b(3))

Gates Outputs

Intuition

➤ Tie forget and input gates


➤ Each memory cell is either kept as it or replaced by a new value

Input gate is tied to 
the forget gate



LSTM VARIANT: PEEPHOLES

Intuition

➤ In standard LSTMs, gates are not dependent on the memory state


➤ In peephole LSTMs, gates depend on the memory
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LSTM VARIANT: PEEPHOLES

Intuition
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new memory state



LSTM VARIANT: PEEPHOLES

Intuition

➤ In standard LSTMs, gates are not dependent on the memory state


➤ In peephole LSTMs, gates depend on the memory

h(n) = o(n) × tanh(c(n))

c(n) = f(n) × c(n−1) + i(n) × tanh(U(3) [ x(n)

h(n−1)] + b(3))

Gates Outputs

f(n) = σ(U(1)
x(n)

h(n−1)

c(n−1)
+ b(1))

i(n) = σ(U(2)
x(n)

h(n−1)

c(n−1)
+ b(2))

o(n) = σ(U(4)
x(n)

h(n−1)

c(n)
+ b(4))

Look memory content to 
choose which cell to change

Output gate depend on the 
new memory state

Unchanged



RNN-BASED 
ARCHITECTURES



MULTI-LAYER RNN

The dog is eating

h(4)h(3)h(2)h(1)h(n)

h(n), c(n)

RNN with one layer

RNN with two layers

➤ Each layer as it own set of trainable parameters


➤ The recurrent connection is layer-dependent


➤ The input of layer n > 1 is the hidden representation at layer n

The dog is eating

h(2,4)h(2,3)h(2,2)h(2,1)

Layer 2

h(1,n), c(1,n)

h(2,n)

x(1,n)

h(2,n), c(2,n)

Layer 1

x(n)



TAGGING WITH LSTMS

They  walk  the  dog

PRP VB DET NN

Part-of-speech tagging Named entity recognition

Neil  Armstrong  visited  the  moon

B-Per I-Per O O B-Loc



TAGGING WITH LSTMS

They  walk  the  dog

PRP VB DET NN

Part-of-speech tagging Named entity recognition

Neil  Armstrong  visited  the  moon

B-Per I-Per O O B-Loc

They walk the dog

h(4)h(3)h(2)h(1)

MLP MLP MLP MLP

Neural architecture

1. A RNN computes a context sensitive representation of each word


2. At each time step, the output of the RNN if fed to a MLP for classification

MLPs share 
parameters

!
The classifiers receive no information 
about context on the right of each word!



BIRNN
Intuition

Use two RNNs with different trainable parameters:


➤ Forward RNN: visit the sentence from left to right


➤ Backward RNN: visit the sentence from right to left
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we concatenate the output 

of each RNN
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BIRNN
Intuition

Use two RNNs with different trainable parameters:


➤ Forward RNN: visit the sentence from left to right


➤ Backward RNN: visit the sentence from right to left

The dog is eating

For token representation, 
we concatenate the output 

of each RNN

For sentence 
representation, we 

concatenate the output of 
the last cell of each RNN



MULTI-STACK BIRNN
Intuition

Multi-layer RNNs have information only about previous words



MULTI-STACK BIRNN

The dog is eating

}First BiRNN stack

Intuition

Multi-layer RNNs have information only about previous words



MULTI-STACK BIRNN

The dog is eating

}

}Second BiRNN stack

First BiRNN stack

Intuition

Multi-layer RNNs have information only about previous words

Each cell in the 
second stack 

has information 
about the whole 

sentence!


