
DEEP LEARNING
FOR NATURAL LANGUAGE PROCESSING

Lecture 2: Recurrent Neural Networks (RNNs)
Caio Corro

LECTURE 1 RECALL

Language modeling with a multi-layer perceptron

2nd order Markov chain: p(y1, . . . , yn) = p(y1) p(y2 |y1)
n

∏
i=3

p(yi |yi−1, yi−2)

z = σ (U(1)x + b(1))x = [
Embedding of yi−1

Embedding of yi−2] w = U(2)z + b(2)

Concatenate the
embeddings of the two

previous words

Hidden
representation

Probability
distribution

Output
projection

p(yi |yi−1, yi−2) =
exp(wyi

)
∑y′ exp(wy′)

LECTURE 1 RECALL

Language modeling with a multi-layer perceptron

2nd order Markov chain: p(y1, . . . , yn) = p(y1) p(y2 |y1)
n

∏
i=3

p(yi |yi−1, yi−2)

z = σ (U(1)x + b(1))x = [
Embedding of yi−1

Embedding of yi−2] w = U(2)z + b(2) p(yi |yi−1, yi−2) =
exp(wyi

)
∑y′ exp(wy′)

Sentence classification with a Convolutional Neural Network
1. Convolution: sliding window of fixed size of the input sentence

2. Mean/max pooling over convolution outputs

3. Multi-linear perceptron

LECTURE 1 RECALL

Language modeling with a multi-layer perceptron

2nd order Markov chain: p(y1, . . . , yn) = p(y1) p(y2 |y1)
n

∏
i=3

p(yi |yi−1, yi−2)

z = σ (U(1)x + b(1))x = [
Embedding of yi−1

Embedding of yi−2] w = U(2)z + b(2) p(yi |yi−1, yi−2) =
exp(wyi

)
∑y′ exp(wy′)

Sentence classification with a Convolutional Neural Network
1. Convolution: sliding window of fixed size of the input sentence

2. Mean/max pooling over convolution outputs

3. Multi-linear perceptron

Main issue
➤ These 2 networks only use local word-order information

➤ No long range dependencies

LONG RANGE DEPENDENCIES

Recurrent neural networks
➤ Inputs are fed sequentially

➤ State representation updated at each input

The dog is eating

Today

LONG RANGE DEPENDENCIES

Recurrent neural networks
➤ Inputs are fed sequentially

➤ State representation updated at each input

Attention network
➤ Inputs contain position information

➤ At each position look at any input in the sentence

Next time!

The dog is eating

The.1 dog.2 is.3 eating.4

Today

RECURRENT NEURAL NETWORK

h(n)

x(n)

h(n)

x(n)

r(n−1) r(n)

Input

Output

Incoming recurrent
connection

Outgoing recurrent
connection

Recurrent neural network cell

RECURRENT NEURAL NETWORK

The dog is eating

h(4)h(3)h(2)h(1)

h(n)

x(n)

h(n)

x(n)

r(n−1) r(n)

Input

Output

Incoming recurrent
connection

Outgoing recurrent
connection

Recurrent neural network cell

Dynamic neural network

All cells share the
same parameters

LANGUAGE MODEL
Why do we usually make independence assumptions?
➤ Less parameters to learn

➤ Less sparsity

➤ 2nd order Markov chain: p(y1, . . . , yn) = p(y1) p(y2 |y1)
n

∏
i=3

p(yi |yi−1, yi−2)

p(y1, . . . , yn) = p(y1)
n

∏
i=2

p(yi |yi−1)➤ 1st order Markov chain:

|V | × |V | parameters

|V | × |V | × |V | parameters

Non neural language model

Multi-layer perceptron language model
➤ No sparsity issue thanks to word embeddings

➤ Independence assumption, so no long range dependencies

LANGUAGE MODEL WITH RECURRENT NEURAL NETWORKS

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)

No independence
assumption!

LANGUAGE MODEL WITH RECURRENT NEURAL NETWORKS

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)

No independence
assumption!

<BOS>

p(y1)

LANGUAGE MODEL WITH RECURRENT NEURAL NETWORKS

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)

No independence
assumption!

<BOS>

p(y1)

The<BOS>

p(y2 |y1)

LANGUAGE MODEL WITH RECURRENT NEURAL NETWORKS

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)

No independence
assumption!

<BOS>

p(y1)

The<BOS>

p(y2 |y1)

The dog<BOS>

p(y3 |y1, y2)

LANGUAGE MODEL WITH RECURRENT NEURAL NETWORKS

p(y1 . . . yn) = p(y1, . . . , yn−1)p(yn |y1, . . . , yn−1)

No independence
assumption!

<BOS>

p(y1)

The<BOS>

p(y2 |y1)

The dog<BOS>

p(y3 |y1, y2)

The dog is<BOS>

p(y4 |y1, y2, y3)

SENTENCE CLASSIFICATION

Neural architecture
1. A recurrent neural network (RNN) compute a context sensitive representation of

the sentence

2. A multi-layer perceptron takes as input this representation and output class weights

SENTENCE CLASSIFICATION

Neural architecture
1. A recurrent neural network (RNN) compute a context sensitive representation of

the sentence

2. A multi-layer perceptron takes as input this representation and output class weights

The dog is eating

z(1)

Context sensitive
representation

1

SENTENCE CLASSIFICATION

Neural architecture
1. A recurrent neural network (RNN) compute a context sensitive representation of

the sentence

2. A multi-layer perceptron takes as input this representation and output class weights

The dog is eating

z(1)

Context sensitive
representation

1

z(2) = σ (U(1)z(1) + b(1))
w = U(2)z(2) + b(2)

Output weights

MLP hidden layer
2

MACHINE TRANSLATION

Neural architecture: Encoder-Decoder
1. Encoder: a recurrent neural network (RNN) compute a context sensitive

representation of the sentence

2. Decoder: a different recurrent neural network (RNN) compute the translation,
word after word

Conditional language model

MACHINE TRANSLATION

The dog is running

z

Neural architecture: Encoder-Decoder
1. Encoder: a recurrent neural network (RNN) compute a context sensitive

representation of the sentence

2. Decoder: a different recurrent neural network (RNN) compute the translation,
word after word

Conditional language model

1

MACHINE TRANSLATION

The dog is running

z

<BOS>

Neural architecture: Encoder-Decoder
1. Encoder: a recurrent neural network (RNN) compute a context sensitive

representation of the sentence

2. Decoder: a different recurrent neural network (RNN) compute the translation,
word after word

Conditional language model

le
1 2

Begin of sentence

MACHINE TRANSLATION

The dog is running

z

<BOS> le

Neural architecture: Encoder-Decoder
1. Encoder: a recurrent neural network (RNN) compute a context sensitive

representation of the sentence

2. Decoder: a different recurrent neural network (RNN) compute the translation,
word after word

Conditional language model

le chien
1 2

Begin of sentence

MACHINE TRANSLATION

The dog is running

z

<BOS> le chien

Neural architecture: Encoder-Decoder
1. Encoder: a recurrent neural network (RNN) compute a context sensitive

representation of the sentence

2. Decoder: a different recurrent neural network (RNN) compute the translation,
word after word

Conditional language model

le chien court
1 2

Begin of sentence

MACHINE TRANSLATION

The dog is running

z

<BOS> le chien court

Neural architecture: Encoder-Decoder
1. Encoder: a recurrent neural network (RNN) compute a context sensitive

representation of the sentence

2. Decoder: a different recurrent neural network (RNN) compute the translation,
word after word

Conditional language model

le chien court <EOS>
1 2

Begin of sentence

Stop translation when the end of
sentence token is generated

SIMPLE RECURRENT
NEURAL NETWORK

MULTI-LAYER PERCEPTRON RECURRENT NETWORK

The dog is eating

h(4)h(3)h(2)h(1)

h(4)

h(n) = tanh(U [x(n)

h(n−1)] + b)

word

h

h

Multi-linear perceptron cell
➤ Input: the current word and the previous output

➤ Output: the hidden representation

The recurrent connection is juste the output at each position

GRADIENT BASED LEARNING PROBLEM
Does it work?
➤ In theory: yes

➤ In practice: no, gradient based learning of RNN fail to learn long range dependencies!

The dog , I

h(4)h(3)h(2)h(1)

was told by my friend is,

… …

h(11)

Difficulties to
propagate influence

GRADIENT BASED LEARNING PROBLEM
Does it work?
➤ In theory: yes

➤ In practice: no, gradient based learning of RNN fail to learn long range dependencies!

Deep learning is not a « single tool fits all problem » solution
➤ You need to understand your data and prediction task

➤ You need to understand why a given neural architecture may fail for a given task

➤ You need to be able design tailored neural architectures for a given task

The dog , I

h(4)h(3)h(2)h(1)

was told by my friend is,

… …

h(11)

Difficulties to
propagate influence

LONG SHORT-TERM
MEMORY NETWORKS

LONG SHORT-TERM MEMORY NETWORKS (LSTM)

Intuition
➤ Memory vector which is passed along the sequence

➤ At each time step, the network selects which cell of the memory to modify

The network can learn to keep track of
long distance relationships

cMemory vector

LSTM cell
➤ The recurrent connection pass the memory vector to the next cell

h

h, c

x

ERASING/WRITING VALUES IN A VECTOR

Erasing values in the memory

⇒
3.02

−4.11
21.00
4.44
−6.9

0
0

21.00
4.44
−6.9

« Forget » the first
two cells

ERASING/WRITING VALUES IN A VECTOR

Erasing values in the memory

⇒
3.02

−4.11
21.00
4.44
−6.9

0
0

21.00
4.44
−6.9

« Forget » the first
two cells

Writing values in the memory

Memory after
update⇒

0
0

21.00
4.44
−6.9

10.0
5.0
1.0
0
0

10.0
5.0

22.00
4.44
−6.9

+

Memory before update Update

GATE MECHANISM

Erasing values in a vector
Let assume we want to remove some values from a vector c:

1. A simple linear classifier compute the importance of each value in c:

2. We erase non important value, i.e. values with a negative weight in w

w = Uc + b

Not necessarily c, it can
depends on anything

GATE MECHANISM

= +

×

w U b

c

Erasing values in a vector
Let assume we want to remove some values from a vector c:

1. A simple linear classifier compute the importance of each value in c:

2. We erase non important value, i.e. values with a negative weight in w

w = Uc + b

1

Importance of each
cell in c

Not necessarily c, it can
depends on anything

GATE MECHANISM

= +

×

w U b

c

Erasing values in a vector
Let assume we want to remove some values from a vector c:

1. A simple linear classifier compute the importance of each value in c:

2. We erase non important value, i.e. values with a negative weight in w

w = Uc + b

c′ i = {ci if wi > 0,
0 otherwise

1 2

Importance of each
cell in c

Not necessarily c, it can
depends on anything

GATE MECHANISM

= +

×

w U b

c

Erasing values in a vector
Let assume we want to remove some values from a vector c:

1. A simple linear classifier compute the importance of each value in c:

2. We erase non important value, i.e. values with a negative weight in w

w = Uc + b

c′ i = {ci if wi > 0,
0 otherwise

1

bi = {1 if wi > 0,
0 otherwise

c′ = c ⊙ b

2

OR
Vector of booleans

indicating which cell
we must keep

Importance of each
cell in c

Not necessarily c, it can
depends on anything

Element-wise multiplication

CELL SELECTION AND BACKPROPAGATION?

w = Uc + b

Forward pass

�4 �2 0 2 4
�2

�1

0

1

2

wi

bi

bi = {1 if wi > 0,
0 otherwise

CELL SELECTION AND BACKPROPAGATION?

w = Uc + b

Forward pass Backward pass
By the chain rule: ∂ℒ

∂wi
=

∂ℒ
∂bi

⋅
∂bi

∂wi
+ . . .

�4 �2 0 2 4
�2

�1

0

1

2

wi

bi

What does this term
look like?

Gradient wrt the loss

bi = {1 if wi > 0,
0 otherwise

CELL SELECTION AND BACKPROPAGATION?

w = Uc + b

Forward pass Backward pass
By the chain rule: ∂ℒ

∂wi
=

∂ℒ
∂bi

⋅
∂bi

∂wi
+ . . .

∂bi

∂wi

�4 �2 0 2 4
�2

�1

0

1

2

wi�4 �2 0 2 4
�2

�1

0

1

2

wi

bi

What does this term
look like?

Gradient wrt the loss

Gradient is blocked!
No information is back propagated!!

bi = {1 if wi > 0,
0 otherwise

SMOOTH SELECTION 1/2

bi = {1 if wi > 0,
0 otherwise

bi = argmaxyi
yi × wi

s.t. yi ≤ 1
OR

Equivalent formulation as a
small optimization problem

yi ≥ 0

SMOOTH SELECTION 1/2

bi = {1 if wi > 0,
0 otherwise

bi = argmaxyi
yi × wi

s.t. yi ≤ 1
OR

Equivalent formulation as a
small optimization problem

yi ≥ 0
Intuition
➤ At the optimal solution, one of the constraint is tight

=> small perturbation on will not change the solution

➤ We can introduce a penalty in the objective so that constraints are never tight
at the optimal solution

wi

SMOOTH SELECTION 1/2

bi = {1 if wi > 0,
0 otherwise

bi = argmaxyi
yi × wi

s.t. yi ≤ 1
OR

Equivalent formulation as a
small optimization problem

yi ≥ 0
Intuition
➤ At the optimal solution, one of the constraint is tight

=> small perturbation on will not change the solution

➤ We can introduce a penalty in the objective so that constraints are never tight
at the optimal solution

wi

bi = argmaxyi
yi × wi − Ω(yi)

s.t. yi ≤ 1

yi ≥ 0

Strong convex regularizer

SMOOTH SELECTION 1/2

bi = argmaxyi
yi × wi − Ω(yi)

s.t. yi ≤ 1

yi ≥ 0

How to choose the convex regularizer?
➤ We need to solve the program quickly

➤ We need to be able to back propagate easily

➤ Several solutions
(i.e. similar to interior point method)

SMOOTH SELECTION 1/2

bi = argmaxyi
yi × wi − Ω(yi)

s.t. yi ≤ 1

yi ≥ 0

How to choose the convex regularizer?
➤ We need to solve the program quickly

➤ We need to be able to back propagate easily

➤ Several solutions
(i.e. similar to interior point method)

bi = argmaxyi
yi × wi − yi log yi − (1 − yi)log(1 − yi)

s.t. yi ≤ 1

yi ≥ 0

Negative Fermi-Dirac entropy

SMOOTH SELECTION 1/2

bi = argmaxyi
yi × wi − Ω(yi)

s.t. yi ≤ 1

yi ≥ 0

How to choose the convex regularizer?
➤ We need to solve the program quickly

➤ We need to be able to back propagate easily

➤ Several solutions
(i.e. similar to interior point method)

bi = argmaxyi
yi × wi − yi log yi − (1 − yi)log(1 − yi)

s.t. yi ≤ 1

yi ≥ 0

Negative Fermi-Dirac entropy

�4 �2 0 2 4
�1

�0.5

0

0.5

1

bi =
1

(1 + exp(−wi))
= σ(wi)

This is actually the sigmoid
(solve the KKT condition to see that)

Smooth and differentiable
approximation! :)

LSTM CELL 1/2

c(n−1)

h(n−1)

x(n)

Time step input

Incoming
memory

Incoming
representation

LSTM CELL 1/2

c(n−1)

h(n−1)

x(n)

×

σ(U(1) [x(n)

h(n−1)] + b(1))

Forget gate

Time step input

Incoming
memory

Incoming
representation

LSTM CELL 1/2

c(n−1)

h(n−1)

x(n)

×

σ(U(1) [x(n)

h(n−1)] + b(1)) tanh(U(3) [x(n)

h(n−1)] + b(3))

Forget gate

What could we add
to the memory?

Time step input

Incoming
memory

Incoming
representation

LSTM CELL 1/2

c(n−1)

h(n−1)

x(n)

×

σ(U(1) [x(n)

h(n−1)] + b(1)) σ(U(2) [x(n)

h(n−1)] + b(2)) tanh(U(3) [x(n)

h(n−1)] + b(3))

×

+

Forget gate
Input gate

What could we add
to the memory?

Time step input

Incoming
memory

Incoming
representation

LSTM CELL 1/2

c(n−1)

h(n−1)

x(n)

×

σ(U(1) [x(n)

h(n−1)] + b(1)) σ(U(2) [x(n)

h(n−1)] + b(2)) tanh(U(3) [x(n)

h(n−1)] + b(3))

×

+

c(n)
Forget gate

Input gate

What could we add
to the memory?

Time step input

Incoming
memory

Incoming
representation

Outgoing
memory

LSTM CELL 1/2

c(n−1)

h(n−1)

x(n)

×

σ(U(1) [x(n)

h(n−1)] + b(1)) σ(U(2) [x(n)

h(n−1)] + b(2)) tanh(U(3) [x(n)

h(n−1)] + b(3))

σ(U(4) [x(n)

h(n−1)] + b(4))

×

+

c(n)

h(n)

×

Forget gate

tanh

Input gate

What could we add
to the memory?

Output gate

Time step input

Incoming
memory

Incoming
representation

Outgoing
memory

Hidden
representation

LSTM CELL 2/2

f(n) = σ(U(1) [x(n)

h(n−1)] + b(1))

i(n) = σ(U(2) [x(n)

h(n−1)] + b(2))

o(n) = σ(U(4) [x(n)

h(n−1)] + b(4))

h(n) = o(n) × tanh(c(n))

c(n) = f(n) × c(n−1) + i(n) × tanh(U(3) [x(n)

h(n−1)] + b(3))

Gates Outputs

Number of parameters
4 times more parameters than a simple recurrent neural network!

Erase memory

Update memory

Compute output wrt
memory

LSTM VARIANT: COUPLED FORGET AND INPUT GATES

f(n) = σ(U(1) [x(n)

h(n−1)] + b(1))
i(n) = 1 − f(n)

o(n) = σ(U(4) [x(n)

h(n−1)] + b(4))
h(n) = o(n) × tanh(c(n))

c(n) = f(n) × c(n−1) + i(n) × tanh(U(3) [x(n)

h(n−1)] + b(3))

Gates Outputs

Intuition
➤ Tie forget and input gates

➤ Each memory cell is either kept as it or replaced by a new value

Input gate is tied to
the forget gate

LSTM VARIANT: PEEPHOLES

Intuition
➤ In standard LSTMs, gates are not dependent on the memory state

➤ In peephole LSTMs, gates depend on the memory

LSTM VARIANT: PEEPHOLES

Intuition
➤ In standard LSTMs, gates are not dependent on the memory state

➤ In peephole LSTMs, gates depend on the memory

Gates

f(n) = σ(U(1)
x(n)

h(n−1)

c(n−1)
+ b(1))

i(n) = σ(U(2)
x(n)

h(n−1)

c(n−1)
+ b(2))

Look memory content to
choose which cell to change

LSTM VARIANT: PEEPHOLES

Intuition
➤ In standard LSTMs, gates are not dependent on the memory state

➤ In peephole LSTMs, gates depend on the memory

Gates

f(n) = σ(U(1)
x(n)

h(n−1)

c(n−1)
+ b(1))

i(n) = σ(U(2)
x(n)

h(n−1)

c(n−1)
+ b(2))

o(n) = σ(U(4)
x(n)

h(n−1)

c(n)
+ b(4))

Look memory content to
choose which cell to change

Output gate depend on the
new memory state

LSTM VARIANT: PEEPHOLES

Intuition
➤ In standard LSTMs, gates are not dependent on the memory state

➤ In peephole LSTMs, gates depend on the memory

h(n) = o(n) × tanh(c(n))

c(n) = f(n) × c(n−1) + i(n) × tanh(U(3) [x(n)

h(n−1)] + b(3))

Gates Outputs

f(n) = σ(U(1)
x(n)

h(n−1)

c(n−1)
+ b(1))

i(n) = σ(U(2)
x(n)

h(n−1)

c(n−1)
+ b(2))

o(n) = σ(U(4)
x(n)

h(n−1)

c(n)
+ b(4))

Look memory content to
choose which cell to change

Output gate depend on the
new memory state

Unchanged

RNN-BASED
ARCHITECTURES

MULTI-LAYER RNN

The dog is eating

h(4)h(3)h(2)h(1)h(n)

h(n), c(n)

RNN with one layer

RNN with two layers
➤ Each layer as it own set of trainable parameters

➤ The recurrent connection is layer-dependent

➤ The input of layer n > 1 is the hidden representation at layer n

The dog is eating

h(2,4)h(2,3)h(2,2)h(2,1)

Layer 2

h(1,n), c(1,n)

h(2,n)

x(1,n)

h(2,n), c(2,n)

Layer 1

x(n)

TAGGING WITH LSTMS

They walk the dog

PRP VB DET NN

Part-of-speech tagging Named entity recognition

Neil Armstrong visited the moon

B-Per I-Per O O B-Loc

TAGGING WITH LSTMS

They walk the dog

PRP VB DET NN

Part-of-speech tagging Named entity recognition

Neil Armstrong visited the moon

B-Per I-Per O O B-Loc

They walk the dog

h(4)h(3)h(2)h(1)

MLP MLP MLP MLP

Neural architecture
1. A RNN computes a context sensitive representation of each word

2. At each time step, the output of the RNN if fed to a MLP for classification

MLPs share
parameters

!
The classifiers receive no information
about context on the right of each word!

BIRNN
Intuition
Use two RNNs with different trainable parameters:

➤ Forward RNN: visit the sentence from left to right

➤ Backward RNN: visit the sentence from right to left

BIRNN
Intuition
Use two RNNs with different trainable parameters:

➤ Forward RNN: visit the sentence from left to right

➤ Backward RNN: visit the sentence from right to left

The dog is eating

Forward RNN

BIRNN
Intuition
Use two RNNs with different trainable parameters:

➤ Forward RNN: visit the sentence from left to right

➤ Backward RNN: visit the sentence from right to left

The dog is eating

Forward RNN

Backward RNN

BIRNN
Intuition
Use two RNNs with different trainable parameters:

➤ Forward RNN: visit the sentence from left to right

➤ Backward RNN: visit the sentence from right to left

The dog is eating

For token representation,
we concatenate the output

of each RNN

BIRNN
Intuition
Use two RNNs with different trainable parameters:

➤ Forward RNN: visit the sentence from left to right

➤ Backward RNN: visit the sentence from right to left

The dog is eating

For token representation,
we concatenate the output

of each RNN

BIRNN
Intuition
Use two RNNs with different trainable parameters:

➤ Forward RNN: visit the sentence from left to right

➤ Backward RNN: visit the sentence from right to left

The dog is eating

For token representation,
we concatenate the output

of each RNN

For sentence
representation, we

concatenate the output of
the last cell of each RNN

MULTI-STACK BIRNN
Intuition
Multi-layer RNNs have information only about previous words

MULTI-STACK BIRNN

The dog is eating

}First BiRNN stack

Intuition
Multi-layer RNNs have information only about previous words

MULTI-STACK BIRNN

The dog is eating

}

}Second BiRNN stack

First BiRNN stack

Intuition
Multi-layer RNNs have information only about previous words

Each cell in the
second stack

has information
about the whole

sentence!

