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Lecture 4: Word Representation 
Caio Corro



NEURAL NETWORK AND TEXTUAL INPUT

But… 
➤ Most words rarely appear in the training data: 

is a few update enough to tune the word embedding? 

➤ Data annotation is expensive, and therefore limited: 
How to generalize to words unseen in the training data?

The dog is running

LSTM

Word 
embeddings

Sentence 
embedding

Solutions 
➤ Special unknown word embedding 

➤ Sub-word models (e.g. character based representation) 

➤ Pre-trained word representation (i.e. use large unlabeled dataset to train word embeddings)



UNKNOWN WORD EMBEDDING 1/2

<UNK>

Main idea 
➤ Add a special <UNK> word your embedding table 

➤ At test time, map word unseen in the training data to <UNK>

Training the <UNK> word embedding 
➤ Replace all rare words in the training data with <UNK> 

(e.g. all words occurring less the 2 times) 

➤ Replace words with <UNK> with a given probability at each update: word dropout 

p(w) =
1

1 + n. occurences of w in train data
Frequent words are 
replaced less often



UNKNOWN WORD EMBEDDING 2/2

def forward(self, inputs): 
batch_words = [t["words"].to(self.word_embs.weight.device) for t in inputs] 

if self.training and self.word_dropout: 
batch_words = [words.clone() for words in batch_words] 

for b in range(len(batch_words)): 
for i in range(batch_words[b].size()[0]): 

if np.random.rand() < 1 / (1 + self.word_counts[batch_words[b][i].item()]): 
batch_words[b][i] = self.unk_word_index 

padded_inputs = torch.nn.utils.rnn.pad_sequence( 
batch_words, 
batch_first=True, 
padding_value=self.word_embs.padding_idx 

) 

Move input tensors to the same 
device as the embedding table

Word dropout if module is in training 
Copy because it will be updated

For each sentence in the batch
For each word in the sentence

Replace with given probability

Build batched input



SUB-WORD MODELS 1/3
Morphological rich languages 
➤ Analytic languages (e.g. English): morphology plays plays a relatively modest role. 
 

➤ Synthetic languages (e.g. German): Morphology plays an important role, 
therefore the number of words can huge.

In Sumerian the following differences are encoded  
via morphological inflection: « I went/he went/he went to him »

Plural in English: « dog/dogs »



SUB-WORD MODELS 1/3
Morphological rich languages 
➤ Analytic languages (e.g. English): morphology plays plays a relatively modest role. 
 

➤ Synthetic languages (e.g. German): Morphology plays an important role, 
therefore the number of words can huge.

Preprocessing step 
Extract features from word before building word embeddings: 

➤ Lemma/stem 

➤ Inflectional morphemes (e.g. « s » indicating plural, « ed » indicating past tense, etc) 

and combine such information.

We don’t like preprocessing steps 
in deep learning!

In Sumerian the following differences are encoded  
via morphological inflection: « I went/he went/he went to him »

Plural in English: « dog/dogs »



SUB-WORD MODELS 2/3

Character LSTM 
➤ Character embeddings as input 

➤ Concatenation of outputs of forward and backward LSTM as output 

In practice 
➤ Add <BOS>and <EOW> embeddings to each input (usually done during preprocessing) 

➤ Concatenate word + character LSTM output

d o g s

Concatenate the output 
of the forward and 

Character 
embeddings

Backward LSTM

Forward LSTM

Or character CNN



SUB-WORD MODELS 3/3

class CharacterEncoder(nn.Module): 
    def __init__(self, voc_size): 
        super(CharacterEncoder, self).__init__() 

        self.embeddings = nn.Embedding(voc_size+1, 100, padding_idx=voc_size) 
        self.lstm = nn.LSTM(100, 125, bidirectional=True, batch_first=True)

Add a padding word to the 
vocabulary so we can batch 

words of different size

Dim of input 
embeddings

LSTM hidden 
rear dim

BiLSTM First dimension 
is batch



SUB-WORD MODELS 3/3

class CharacterEncoder(nn.Module): 
    def __init__(self, voc_size): 
        super(CharacterEncoder, self).__init__() 

        self.embeddings = nn.Embedding(voc_size+1, 100, padding_idx=voc_size) 
        self.lstm = nn.LSTM(100, 125, bidirectional=True, batch_first=True)

List of tensors
    def forward(self, input): 
        padded_inputs = torch.nn.utils.rnn.pad_sequence( 
            input, 
            batch_first=True, 
            padding_value=self.embeddings.padding_idx 
        )

Input words can be of different 
lengths so we need to pad them



SUB-WORD MODELS 3/3

class CharacterEncoder(nn.Module): 
    def __init__(self, voc_size): 
        super(CharacterEncoder, self).__init__() 

        self.embeddings = nn.Embedding(voc_size+1, 100, padding_idx=voc_size) 
        self.lstm = nn.LSTM(100, 125, bidirectional=True, batch_first=True)

        lengths = [len(i) for i in input] 
        packed_embs = torch.nn.utils.rnn.pack_padded_sequence( 
            emb_inputs, 
            lengths, 
            batch_first=True, 
            enforce_sorted=False 
        ) 

    def forward(self, input): 
        padded_inputs = torch.nn.utils.rnn.pad_sequence( 
            input, 
            batch_first=True, 
            padding_value=self.embeddings.padding_idx 
        )

Retrieve embeddings  
+ store batching information (length of each word)  
+ other stuff under the hood

Input is not sorted by length



SUB-WORD MODELS 3/3

class CharacterEncoder(nn.Module): 
    def __init__(self, voc_size): 
        super(CharacterEncoder, self).__init__() 

        self.embeddings = nn.Embedding(voc_size+1, 100, padding_idx=voc_size) 
        self.lstm = nn.LSTM(100, 125, bidirectional=True, batch_first=True)

        lengths = [len(i) for i in input] 
        packed_embs = torch.nn.utils.rnn.pack_padded_sequence( 
            emb_inputs, 
            lengths, 
            batch_first=True, 
            enforce_sorted=False 
        ) 

    def forward(self, input): 
        padded_inputs = torch.nn.utils.rnn.pad_sequence( 
            input, 
            batch_first=True, 
            padding_value=self.embeddings.padding_idx 
        )

Retrieve embeddings  
+ store batching information (length of each word)  
+ other stuff under the hood

Run the LSTM over batched inputs

        _, (endpoints, _) = self.lstm(packed_embs)



SUB-WORD MODELS 3/3

class CharacterEncoder(nn.Module): 
    def __init__(self, voc_size): 
        super(CharacterEncoder, self).__init__() 

        self.embeddings = nn.Embedding(voc_size+1, 100, padding_idx=voc_size) 
        self.lstm = nn.LSTM(100, 125, bidirectional=True, batch_first=True)

        lengths = [len(i) for i in input] 
        packed_embs = torch.nn.utils.rnn.pack_padded_sequence( 
            emb_inputs, 
            lengths, 
            batch_first=True, 
            enforce_sorted=False 
        ) 

        token_repr = torch.cat([endpoints[0], endpoints[1]], dim=1) 
        return token_repr

    def forward(self, input): 
        padded_inputs = torch.nn.utils.rnn.pad_sequence( 
            input, 
            batch_first=True, 
            padding_value=self.embeddings.padding_idx 
        )

Concatenate forward and 
backward outputs        _, (endpoints, _) = self.lstm(packed_embs)



PRE-TRAINED WORD EMBEDDINGS

Evaluation 
➤ Intrinsic evaluation: what does the learned representation says about words?  

➤ Extrinsic evaluation: does this representation improve results on a downstream task?

Pre-trained word embeddings 
Task agnostic word representations that can be used to « bootstrap » a neural network 

➤ Type of models: count and predict 

➤ Context: non-contextual and contextual embeddings

Semi-supervised learning 
➤ Can we use large corpus of unlabeled text to improve to performance of a model? 

➤ Task specific

Word embeddings only Also include RNN/Attention layers



DISTRIBUTIONAL 
SEMANTICS AND COUNT 

MODELS



DISTRIBUTIONAL SEMANTICS

Use theory of meaning 
The meaning of a word is defined by the context where it is used, 
i.e. similar words are used in similar contexts.

Geometric approach to word meaning 
➤ Word meanings (i.e. context) encoded in vectors 

➤ Semantic relatedness given by distance metrics 

➤ Word composition via vector operations, 
i.e. build a vector for « red car » by combining word vectors « red » and « car »

Problematic for non-compositional 
expressions, e.g. « rock and roll »

Meaning 
➤ Signifier: how it is represented using symbols (word, sentences) 

➤ Signified: what does it express



WORD CO-OCCURENCE MATRICES 1/2

dog cat eating sleaping the is
dog +1 +1 +1
cat

eating
sleeping

the
is

« The dog is eating. » Context word

Vo
ca

bu
la

ry

➤ Each line correspond to the « vector » of each word in the vocabulary 

➤ Each column track to co-occurence count with other words

Construction 
➤ Initialize the matrix to 0 

➤ For each word in each sentence in a large corpus of text, increment the cell value of 
observed context word

The matrix will be very sparse!



WORD CO-OCCURENCE MATRICES 2/2

Counting methods 
➤ Window restriction: don’t look at the whole sentence but only a limited number of 

surrounding words 

➤ Syntactic restriction: use syntactic relations instead of fixed size window 

+ count transformation, e.g. apply (positive) Pointwise Mutual Information (PMI)

Singular Value Decomposition (SVD) 
➤ Co-occurence matrices are very big, sparse and noisy 

➤ Use (truncated) SVD to keep only the « main directions » and reduce dimensionality 
=> the resulting matrix is dense

Many words co-occur frequently and do 
not carry useful semantic information,  

e.g. « the », « a », « an »,…



EXAMPLE [Sebastian Ruder]



MULTI-LINGUAL WORD EMBEDDING [Ruder et al., 2019]



PREDICT MODELS



PREDICT MODELS

Main idea 
➤ Train a (shallow) neural network for a simple word prediction task 

➤ Use the learned input embeddings as pre-trained embeddings

Models 
➤ Continuous Bag of Words (CBOW): predict a word given its context 

➤ Skip-grams: predict the context of a word

Relation with language models 
➤ We could use MLP or RNN language model to pre-train embeddings too 

➤ But CBOW and Skip-grams are way faster!

[Mikolov et al., 2017]



CONTINUOUS BAG-OF-WORDS (CBOW) 1/2 [Mikolov et al., 2017]

Operation principle 
➤ Predict a word given its context 

➤ The context is a limited window around (left and right) the word to predict 

➤ There is no word order information (i.e. bag-of-word)

The dog is eating delicious food

Word to predict

Context wordsContext words

Objective 
➤ Maximize the probability of the probability of the word to predict 

=> Negative log likelihood loss



CONTINUOUS BAG-OF-WORDS (CBOW) 2/2

dog is delicious food

+ + +z =
1
4 ( )

The dog is eating delicious food

Word to predict

Context wordsContext words

[Mikolov et al., 2017]

z ∈ ℝh : hidden representation

|V |

h

: vocabulary size

: embedding size

E ∈ ℝh×|V| : embedding table



CONTINUOUS BAG-OF-WORDS (CBOW) 2/2

dog is delicious food

+ + +z =
1
4 ( )

The dog is eating delicious food

Word to predict

Context wordsContext words

[Mikolov et al., 2017]

z ∈ ℝh : hidden representation

|V |

h

: vocabulary size

: embedding size

E ∈ ℝh×|V| : embedding table

=

×

u W

z

… …

u ∈ ℝ|V| : output weights

W ∈ ℝ|V|×h : output projection  
  (also called output embedding table)

Very big 
matrix!



SKIP-GRAMS 1/2 [Mikolov et al., 2017]

Operation principle 
➤ Predict the context given a word 

➤ The context is a limited window around (left and right) the word to predict

The dog is eating delicious food

Input word

Context words  
to predict

Context words  
to predict

Objective 
➤ Maximize the probability of the probability of context words 

=> Negative log likelihood loss for each context word



SKIP-GRAMS 2/2 [Mikolov et al., 2017]

=

×

u W

… …

|V |

h

: vocabulary size

: embedding size

E ∈ ℝh×|V| : embedding table

u ∈ ℝ|V| : output weights

W ∈ ℝ|V|×h : output projection  
  (also called output embedding table)

Very big 
matrix!

The dog is eating delicious food

Input word

Context words  
to predict

Context words  
to predict

eating

Same weight vector for 
all context words



ARCHITECTURE COMPARISON [Mikolov et al., 2017]

Issue: computing the loss function is very expensive!



ON NEGATIVE LOG 
LIKELIHOOD LOSS WITH 
LARGE VOCABULARIES



NEGATIVE LOG LIKELIHOOD LOSS

ℒ(x, y) = − log p(x |y) = − log
exp(u(x, y))

∑x′�exp(u(x, y))

Given a context y, we want to maximize to probability of word x 

➤ Language modeling: y can be the previous word, or the 2 previous words, etc. 

➤ Skip-gram: y is the current word and x is a context word 

➤ CBOW: y is the set of context word and x is the current word

= +

×

u( ⋅ , y) W b

z

… … …

Very big 
matrix!

z ∈ ℝm

W ∈ ℝ|V|×m

b ∈ ℝ|V|×m

u( ⋅ , y) ∈ ℝ|V|

Output 
projection

Last hidden 
representation

Output logits

y is the input of the 
network used to 

compute z



NOISE DISTRIBUTION
Main idea 
➤ We cannot manipulate p(x|y) directly (neither evaluate or sample from it) 

➤ We can manipule the unnormalized distribution exp(u(x, y)) for a given x 

➤ We can manipulate « simpler » noise distribution q(x) or q(x|y)



NOISE DISTRIBUTION
Main idea 
➤ We cannot manipulate p(x|y) directly (neither evaluate or sample from it) 

➤ We can manipule the unnormalized distribution exp(u(x, y)) for a given x 

➤ We can manipulate « simpler » noise distribution q(x) or q(x|y)

Example of noise distribution 
➤ Uniform distribution: q(x) =

1
|V |

➤ Unigram distribution: q(x) =
n. occurence of x in data

num words in data

➤ Bigram, trigram… distributions

Note 
There exists other methods that replace the output softmax qui with a different layer, 
like hierarchical softmax => we won’t cover this in the lecture.



NLL GRADIENT

∇ − log p(y |x) = ∇ − log
exp(u(x, y))

Z

Partition function



NLL GRADIENT

∇ − log p(y |x) = ∇ − log
exp(u(x, y))

Z
= ∇ − log

exp(u(x, y))

∑′�
x exp(u(x′�, y))

Partition function



NLL GRADIENT

∇ − log p(y |x) = ∇ − log
exp(u(x, y))

Z

= ∇( − u(x, y) + log∑
x′ �

exp(u(x′�, y)))

= ∇ − log
exp(u(x, y))

∑′�
x exp(u(x′�, y))



NLL GRADIENT

∇ − log p(y |x) = ∇ − log
exp(u(x, y))

Z

= ∇( − u(x, y) + log∑
x′ �

exp(u(x′�, y)))

= − ∇u(x, y) + ∇log∑
x′ �

exp(u(x′�, y))

= ∇ − log
exp(u(x, y))

∑′�
x exp(u(x′�, y))



NLL GRADIENT

∇ − log p(y |x) = ∇ − log
exp(u(x, y))

Z

= ∇( − u(x, y) + log∑
x′ �

exp(u(x′�, y)))

= − ∇u(x, y) + ∇log∑
x′ �

exp(u(x′�, y))

= − ∇u(x, y) +
1

∑x′ �exp(u(x′�, y))
∇∑

x′ �

exp(u(x′�, y))

= ∇ − log
exp(u(x, y))

∑′�
x exp(u(x′�, y))

Chain rule



NLL GRADIENT

∇ − log p(y |x) = ∇ − log
exp(u(x, y))

Z

= ∇( − u(x, y) + log∑
x′ �

exp(u(x′�, y)))

= − ∇u(x, y) + ∇log∑
x′ �

exp(u(x′�, y))

= − ∇u(x, y) +
1

∑x′ �exp(u(x′�, y))
∇∑

x′ �

exp(u(x′�, y))

= − ∇u(x, y) +
1
Z ∑

x′ �

exp(u(x′�))∇u(x′�, y)

= ∇ − log
exp(u(x, y))

∑′�
x exp(u(x′�, y))

Chain rule

Chain rule



NLL GRADIENT

∇ − log p(y |x) = ∇ − log
exp(u(x, y))

Z

= ∇( − u(x, y) + log∑
x′ �

exp(u(x′�, y)))

= − ∇u(x, y) + ∇log∑
x′ �

exp(u(x′�, y))

= − ∇u(x, y) +
1

∑x′ �exp(u(x′�, y))
∇∑

x′ �

exp(u(x′�, y))

= − ∇u(x, y) +
1
Z ∑
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exp(u(x′�))∇u(x′�, y)

= − ∇u(x, y) + ∑
x′ �

exp(u(x′�))
Z

∇u(x′�, y)

= ∇ − log
exp(u(x, y))

∑′�
x exp(u(x′�, y))

Chain rule

Chain rule



NLL GRADIENT

∇ − log p(y |x) = ∇ − log
exp(u(x, y))

Z

= ∇( − u(x, y) + log∑
x′ �

exp(u(x′�, y)))

= − ∇u(x, y) + ∇log∑
x′ �

exp(u(x′�, y))

= − ∇u(x, y) +
1

∑x′ �exp(u(x′�, y))
∇∑

x′ �

exp(u(x′�, y))

= − ∇u(x, y) +
1
Z ∑

x′ �

exp(u(x′�))∇u(x′�, y)

= − ∇u(x, y) + ∑
x′ �

exp(u(x′�))
Z

∇u(x′�, y)

= ∇ − log
exp(u(x, y))

∑′�
x exp(u(x′�, y))

= − ∇u(x, y) + ∑
x′ �

p(x′�)∇u(x′�, y)

Chain rule

Chain rule



MONTE-CARLO ESTIMATION

∇ − log p(x |y) = − ∇u(x) + ∑
x′ �

p(x′�|y)∇u(x′�, y)

NLL gradient



MONTE-CARLO ESTIMATION

∇ − log p(x |y) = − ∇u(x) + ∑
x′ �

p(x′�|y)∇u(x′�, y) = − ∇u(x, y)

1

+ 𝔼p(x′�|y)[∇u(x′�, y)]
2

NLL gradient

1. Increase the score of the gold output 

2. Decrease the score of every other output

Easy to compute!

Expensive for large output spaces!



MONTE-CARLO ESTIMATION

∇ − log p(x |y) = − ∇u(x) + ∑
x′ �

p(x′�|y)∇u(x′�, y) = − ∇u(x, y)

1

+ 𝔼p(x′�|y)[∇u(x′�, y)]
2

NLL gradient

1. Increase the score of the gold output 

2. Decrease the score of every other output

Easy to compute!

Expensive for large output spaces!

𝔼p(x′�,y)[∇u(x′�)] ≃
1
n

k

∑
i=1

∇u(x(i), y)

x(1), . . . , x(k) ∼ p(x |y)

Monte-Carlo estimation of the second term 
We can approximate the expectation in the second term with k samples:



MONTE-CARLO ESTIMATION

∇ − log p(x |y) = − ∇u(x) + ∑
x′ �

p(x′�|y)∇u(x′�, y) = − ∇u(x, y)

1

+ 𝔼p(x′�|y)[∇u(x′�, y)]
2

NLL gradient

1. Increase the score of the gold output 

2. Decrease the score of every other output

Easy to compute!

Expensive for large output spaces!

𝔼p(x′�,y)[∇u(x′�)] ≃
1
n

k

∑
i=1

∇u(x(i), y)

x(1), . . . , x(k) ∼ p(x |y)

Monte-Carlo estimation of the second term 
We can approximate the expectation in the second term with k samples:

To sample, we need to compute               :(u(x, y)



IMPORTANCE SAMPLING



IMPORTANCE SAMPLING

Intuition 
Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)



IMPORTANCE SAMPLING

∇ − log p(x |y) = − ∇u(x, y) + ∑
x′ �

p(x′�)∇u(x′�, y)

Intuition 
Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)



IMPORTANCE SAMPLING

∇ − log p(x |y) = − ∇u(x, y) + ∑
x′ �

p(x′�)∇u(x′�, y)

= − ∇u(x, y) + ∑
x′ �

q(x′�)
p(x′�|y)
q(x′�)

∇u(x′�, y)

Intuition 
Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)
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∇ − log p(x |y) = − ∇u(x, y) + ∑
x′ �

p(x′�)∇u(x′�, y)
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p(x′�|y)
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∇u(x′�, y)
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∇u(x′�, y)]

Intuition 
Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)
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The expectation here is over q(x)
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IMPORTANCE SAMPLING

∇ − log p(x |y) = − ∇u(x, y) + ∑
x′ �

p(x′�)∇u(x′�, y)

= − ∇u(x, y) + ∑
x′ �

q(x′�)
p(x′�|y)
q(x′�)

∇u(x′�, y)

= − ∇u(x, y) + 𝔼q(x′ �)[ p(x′�)
q(x′�)

∇u(x′�, y)]

𝔼q(x′�)[ p(x′�)
q(x′�)

∇u(x′�)] ≃
1
n

k

∑
i=1

p(x′�)
q(x′�)

∇u(x(i))

x(1), . . . , x(k) ∼ q(x)

Intuition 
Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

The expectation here is over q(x)
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x(1), . . . , x(k) ∼ q(x)

Intuition 
Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

The expectation here is over q(x)

Monte-Carlo estimation
Easy because of the premise! :)

We still need to compute the partition Z for the numerator :(
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The partition function appear as 
constant wrt summations!
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𝔼p(x′�)[∇u(x′�, y)] =
∑x′�q(x′�) exp(u(x′ �, y))

q(x′ �) ∇u(x′�, y)

∑x′ �′�q(x′�′�) exp(u(x′�′�))
q(x′ �′ �)

No partition, but still an expensive sum! :(
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Expectations over q
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𝔼p(x′�)[∇u(x′�)] ≃
1
n ∑n

i=1
exp(u(x(i)))

q(x(i))
∇u(x(i)))]

1
n ∑n

i=1
exp(u(x(i)))

q(x(i))

x(1), . . . , x(n) ∼ q(x)

Monte-Carlo estimation
Easy because of the premise! :)

No partition! :) 
We say that the target distribution 

is unnormalized.
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We say that the target distribution 
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𝔼p(x′�)[∇u(x′�)] ≃
1
W

n

∑
i=1

w(x(i))∇u(x(i)) w(x(i)) =
exp(u(x(i)))

q(x(i))
W =

n

∑
i=1

w(x(i))where and

Weighted importance sampling (same thing, different notation)

Weight instead of probability



NOISE CONTRASTIVE ESTIMATION (NCE) 1/5
Motivation 
➤ Self-normalized importance sampling is unbounded: 

➤ NCE change the problem into a binary classification task

𝔼p(x′�)[∇u(x′�)] ≃
1
W

n

∑
i=1

w(x(i))∇u(x(i))

Can be arbitrary large! :(

Intuition 
➤ We want to use the gold word positive reinforcement 

but only a few other words as negative reinforcement 

➤ We want to keep theoretical guarantee (i.e. convergence guarantee) 

➤ We cannot sample from p(x | y) so we use a noise distribution q(x)

Joint distribution over observed and noisy words 
Let D be a random variable indicating if a given word is from the data distribution (D=1) or 
from the noise distribution (D=0) 

p(d, x |y) = {
p(D = 0) × q(x) , if D = 0
p(D = 1) × p(x |y) , if D = 1



NOISE CONTRASTIVE ESTIMATION ILLUSTRATION 1

(sorry, different notations!)
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p(d, x |y) = {
p(D = 0) × q(x) , if D = 0
p(D = 1) × p(x |y) , if D = 1

p(D = 0) =
k

k + 1
p(D = 1) =

1
k + 1

Let assume that we want to use k words for negative reinforcement, then we have:

For each gold word we 
sample k noisy words
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p(d = 0 |x, y) p(d = 1 |x)

Binary classification problem
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p(D = 0 |x, y) =
kq(x)

kq(x) + p(x |y)
p(D = 0 |x, y) =

p(x |y)
kq(x) + p(x |y)

=
kq(x)

kq(x) + exp(u(x, y))
Z(x, y)

=

exp(u(x, y))
Z(x, y)

kq(x) + exp(u(x, y))
Z(x, y)

Partition function 
➤ NCE assume the partition function is a learned parameter 

i.e. we don’t compute it, so the p(x|y) may not be a valid distribution 

➤ There is one partition parameter per datapoint in the dataset 

➤ An usual trick is to fix all of them to 1 when the dataset is large

Z(x, y) is a learned 
parameter here
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(sorry, different notations!)



NOISE CONTRASTIVE ESTIMATION 4/5 [Mnih and Teh, 2012]



NOISE CONTRASTIVE ESTIMATION 5/5 [Labeau and Allauzen, 2017]

q(x) =
(n. occurence of x in data)α

Z

Unigram distribution smoothing 
A distortion coefficient                   is used to smooth the noise distribution increase the 
probability to sample rare words

0 < α < 1



NEGATIVE SAMPLING

p(D = 0 |x, y) =
1

1 + exp(u(x, y))
p(D = 1 |x, y) =

exp(u(x, y))
1 + exp(u(x, y))

[Mikolov et al., 2013]

Idea 
➤ Replace the NLL with a binary classification task 

➤ Positive examples come from the data, negative example from the noise distribution

Warning 
➤ It is a surrogate loss, it is not consistent with negative log likelihood 

➤ It can be used to train word embeddings 

➤ It is inadequate to train langage model (i.e. optimize the wrong objective)



CONTEXT SENSITIVE 
WORD EMBEDDINGS



NEURAL NETWORK PRE-TRAINING

Main idea 
➤ Word embeddings may be useful on their own, but they are widely use to pre-train 

embedding table to increase accuracy, especially regarding out-of-vocabulary word 

➤ Can we pre-train « more » than just word embeddings?

Yes! :)
Most popular pre-trained architectures 
➤ ELMO 

➤ GPT 

➤ BERT

We will not cover this one



ARCHITECTURE COMPARISON [Devlin et al., 2019]



EMBEDDINGS FROM LANGUAGE MODELS (ELMO) [Peters et al., 2018]

Main idea 
➤ Train a bi-directional language model based on LSTMs 

➤ Each LSTM as several layer

Forward LSTM

Backward LSTM

Probability of a sentence

Training loss function

Links 
➤ https://allennlp.org/elmo 

➤ https://allenai.github.io/allennlp-docs/api/allennlp.modules.elmo.html

https://allennlp.org/elmo
https://allenai.github.io/allennlp-docs/api/allennlp.modules.elmo.html


EMBEDDINGS FROM LANGUAGE MODELS (ELMO) [Peters et al., 2018]

The dog is eating

h(2,4)h(2,3)h(2,2)h(2,1)

Layer 2

h(1,n), c(1,n)

h(2,n)

x(1,n)

h(2,n), c(2,n)

Layer 1

Multi-layer RNN 
➤ Each layer as its own set of learn parameters 

➤ Each direction as its own set of parameters 

➤ In practice, the model is trained with 3 layers in each direction

Word input 
➤ No word embeddings 

➤ Character embeddings combined via a character CNN



EMBEDDINGS FROM LANGUAGE MODELS (ELMO) [Peters et al., 2018]

How to use it in practice 
➤ Concatenate hidden layers of the forward and backward LSTMs 

➤ Do a parameterized convex combination of layers 

➤ The ELMo LSTMs can either be fixed or fine-tuned

h (l,i)

h (l,i)

: hidden layer of the forward LSTM at layer l for word at position i

: hidden layer of the forward LSTM at layer l for word at position i

h(l,i) = [h (l,i), h (l,i)] Concatenate

h(i) =
L

∑
l=1

α(l) × h(l,i) α ∈ {α ∈ ℝL |
L

∑
l=1

αl = 1 and ∀l : αl ≥ 0}

Context sensitive 
embedding for word i

Simplex constraint



import allennlp.modules.elmo as elmo 

# init method of a module 
def __init__(self) 

 self.elmo = elmo.Elmo( 
 options_file=path_to_options, 
 weight_file=path_to_weights, 
 # how many convex combination do you want? 
 num_output_representations=1, 
 # set to true at training time 
 # if you want to fine-tune Elmo weights 
 requires_grad=False, 
 do_layer_norm=False, 
 keep_sentence_boundaries=False, 
 dropout=0. 

   ) 
   # to get the output hidden dimension: 
   #self.elmo.get_output_dim() 

You need to install 
the AllenNLP lib

The convex combination 
parameters will have a gradient



import allennlp.modules.elmo as elmo 

# init method of a module 
def __init__(self) 

 self.elmo = elmo.Elmo( 
 options_file=path_to_options, 
 weight_file=path_to_weights, 
 # how many convex combination do you want? 
 num_output_representations=1, 
 # set to true at training time 
 # if you want to fine-tune Elmo weights 
 requires_grad=False, 
 do_layer_norm=False, 
 keep_sentence_boundaries=False, 
 dropout=0. 

   ) 
   # to get the output hidden dimension: 
   #self.elmo.get_output_dim() 

You need to install 
the AllenNLP lib

def forward(elmo_inputs): 
    # elmo_inputs should be a list of list of string 
    # e.g. [["Sentence", "n.", "1"], ["Sentence", "n.", "2"]] 
    elmo_inputs = elmo.batch_to_ids(elmo_inputs) 
    # move to GPU if needed 
    elmo_inputs = elmo_inputs.to(self.elmo.scalar_mix_0.gamma.device) 

    #Â¬àcompute representation! 
    elmo_output = self.elmo(elmo_inputs)['elmo_representations'][0])

The convex combination 
parameters will have a gradient



BERT: DEEP BIDIRECTIONAL TRANSFORMERS [Devlin et al., 2019]

Many variants 
➤ Cased/uncased English BERT 

➤ Multilingual BERT 

➤ French Bert: CamemBERT and FlauBERT

Main idea 
➤ Use a (big) transformer instead of a LSTM 

➤ Use (trained) subword segmentation instead of word or char embeddings 

➤ Use learned position embeddings 

➤ Use two objective function: 

1. Masked language model 

2. Next sentence prediction (some variants don’t)

INRIA (+ Facebook) CNRS



BERT: DEEP BIDIRECTIONAL TRANSFORMERS [Devlin et al., 2019]

Training objective 
➤ Predict masked tokens, i.e. word that have randomly been replaced with [MASK] 

➤ Predict from the context sensitive embedding of [CLS] if the second sentence is correct

Training data 
➤ Introduce [CLS] token at the beginning of each sentence 

➤ End sentence with the [SEP] token 

➤ Randomly replace a subset of tokens with the [MASK] token 

➤ Add the correct next sentence or a randomly sampled sentence from the corpus



BERT: DEEP BIDIRECTIONAL TRANSFORMERS [Devlin et al., 2019]

➤ You may have more than one embedding per word! 
Either use the first or last token embedding for each word 

➤ For sentence classification, you can use the [CLS] embedding 

➤ Similar to ELMO, you can learn a convex combination of several layers instead of 
using the laster layer



BERT: DEEP BIDIRECTIONAL TRANSFORMERS [Le et al., 2019]


