DEEP LEARNING
FOR NATURAL LANGUAGE PROCESSING

Lecture 4: Word Representation
Caio Corro

NEURAL NETWORK AND TEXTUAL INPUT

Sentence
embedding

o @ - O O

o] o

embeddings ® ® ® ®
e @ @ @
The dog 1S running

But...

» Most words rarely appear in the training data:
is a few update enough to tune the word embedding?

» Data annotation is expensive, and therefore limited:
How to generalize to words unseen in the training data?

Solutions

» Special unknown word embedding
» Sub-word models (e.g. character based representation)

> Pre-trained word representation (i.e. use large unlabeled dataset to train word embeddings)

UNKNOWN WORD EMBEDDING 1/2

. .)
Main idea O
» Add a special <UNK> word your embedding table :
> At test time, map word unseen in the training data to <UNK> <UNK>

Training the <UNK> word embedding

» Replace all rare words in the training data with <UNK>
(e.g. all words occurring less the 2 times)

» Replace words with <UNK> with a given probability at each update: word dropout

1

Frequent words are
1 + n. occurences of w in train data replaced less often

p(w) =

UNKNOWN WORD EMBEDDING 2/2

Move input tensors to the same

device as the embedding table

def forward(self, 1nputs):
batch words = [t["words"].to(self.word embs.weight.device) for t in inputs]

Word dropout if module is in training

Copy because it will be updated

batch words = [words.clone() for words in batch words]

For each sentence in the batch
for b in range (len(batch words)): For each word in the sentence
for i in range(batch_words[b].Slze

if self.training and self.word _dropout:

if np.random.rand() < 1 / (1 + self. word counts|[batch words]| 1] .1tem(
batch words[b][1] = self.unk word index

Replace with given probability
padded inputs = torch.nn.utils.rnn.pad sequence (
batch words, : :
batch first=True, Build batched input

padding value=self.word embs.padding idx

SUB-WORD MODELS 1/3

Morphological rich languages

> Analytic languages (e.g. English): morphology plays plays a relatively modest role.

Plural in English: « dog/dogs »

» Synthetic languages (e.g. German): Morphology plays an important role,
therefore the number of words can huge.

In Sumerian the following differences are encoded
via morphological inflection: « I went/he went/he went to him »

SUB-WORD MODELS 1/3

Morphological rich languages

> Analytic languages (e.g. English): morphology plays plays a relatively modest role.

Plural in English: « dog/dogs »

> Synthetic languages (e.g. German): Morphology plays an important role,
therefore the number of words can huge.

In Sumerian the following differences are encoded
via morphological inflection: « I went/he went/he went to him »

We don't like preprocessing steps

Preprocessing step in deep learning!

Extract features from word before building word embeddings:
» Lemma/stem
» Inflectional morphemes (e.g. « s » indicating plural, « ed » indicating past tense, etc)

and combine such information.

SUB-WORD MODELS 2/3

Backward LSTM

\ 4
000

Concatenate the output
of the forward and

Character
embeddings

Qleee
Cleee
Qleee

Character LSTM Or character CNN

» Character embeddings as input

» Concatenation of outputs of forward and backward LSTM as output

In practice

» Add <BOS>and <EOW> embeddings to each input (usually done during preprocessing)

» Concatenate word + character LSTM output

SUB-WORD MODELS 3/3

Add a padding word to the

class CharacterEncoder (nn.Module) :
vocabulary so we can batch

def init (self, voc size): _ _
super (CharacterEncoder, self). init () words of different size
self.embeddings = nn.Embedding(voc size+l, 100, padding idx=voc size)

self.lstm = nn.LSTM (100, 125, bidirectional=True, batch first=True)

m First dimension

Dim of input LSTM hidden

embeddings rear dim Is batch

SUB-WORD MODELS 3/3

class CharacterEncoder (nn.Module) :

def init (self, voc size):
super (CharacterEncoder, self). 1nit ()
self.embeddings = nn.Embedding(voc size)

self.lstm = nn. M (100 bidirecti1
List of tensors lengths so we need to pad them
def forward(self, input):
padded inputs = torch.nn.utils.rnn.pad sequence (
input,

batch first=True,
padding value=self.embeddings.padding idx

SUB-WORD MODELS 3/3

class CharacterEncoder (nn.Module) :

def init (self, voc size):
super (CharacterEncoder, self). 1nit ()
self.embeddings = nn.Embedding(voc size+l, 100, padding idx=voc size)

self.lstm = nn.LSTM (100, 125, bidirectional=True, batch first=True)

def forward(self, input):
padded inputs = torch.nn.utils.rnn.pad sequence (
input,

batch first=True, : : :
padding value=self. store batching information (length of each word)

) + other stuff under the hood

Retrieve embeddings

lengths = [len(i) for i in input]

packed embs = torch.nn.utils.rnn.pack padded sequence (
emb inputs,
lengths,

batch first=True,
enforce sorted=False <@ [pl o/ (i =0 qloli=loiaiziel o)/ =lgleiig

SUB-WORD MODELS 3/3

class CharacterEncoder (nn.Module) :

def init (self, voc size):
super (CharacterEncoder, self). 1nit ()
self.embeddings = nn.Embedding(voc size+l, 100, padding idx=voc size)

self.lstm = nn.LSTM (100, 125, bidirectional=True, batch first=True)

def forward(self, input):
padded inputs = torch.nn.utils.rnn.pad sequence (
input,

batch first=True, : : :
padding value=self. store batching information (length of each word)

) + other stuff under the hood

Retrieve embeddings

lengths = [len(i) for i in input]

packed embs = torch.nn.utils.rnn.pack padded sequence (
emb inputs,
lengths,

batch first=True,
enforce sorted=False | i0lp it ESUE o) ol o ielp(=lo) elb]es
)

, (endpoints,) = self.lstm(packed embs)

SUB-WORD MODELS 3/3

00

class CharacterEncoder (nn.Module) :
def 1nit (self, voc size):

super (CharacterEncoder, self). 1init ()

self.embeddings = nn.Embedding(voc size+l, 100, padding idx=voc size)
self.lstm = nn.LSTM (100, 125, bidirectional=True, batch first=True)

def forward(self, input):
padded inputs = torch.nn.utils.rnn.pad sequence (
input,
batch first=True,
padding value=self.embeddings.padding idx

)

lengths = [len(i) for i in input]

packed embs = torch.nn.utils.rnn.pack padded sequence (
emb inputs,
lengths,

batch first=True,
enforce sorted=False

)
, (endpoints,) = self.lstm(packed embs)

token repr = torch.cat([endpoints[0], endpoints[l]], dim=1)
return token repr

PRE-TRAINED WORD EMBEDDINGS

Semi-supervised learning

» Can we use large corpus of unlabeled text to improve to performance of a model?

> Task specific

Pre-trained word embeddings

Task agnostic word representations that can be used to « bootstrap » a neural network

» Type of models: count and predict

» Context: non-contextual and contextual embeddings

Word embeddings only Also include RNN/Attention layers

Evaluation

> Intrinsic evaluation: what does the learned representation says about words?

» Extrinsic evaluation: does this representation improve results on a downstream task?

DISTRIBUTIONAL
SEMANTICS AND COUNT
MODELS

DISTRIBUTIONAL SEMANTICS

Meaning

> Signifier: how it is represented using symbols (word, sentences)

» Signified: what does it express

Use theory of meaning

The meaning of a word is defined by the context where it is used,
i.e. similar words are used in similar contexts.

Geometric approach to word meaning

» Word meanings (i.e. context) encoded in vectors

» Semantic relatedness given by distance metrics Problematic for non-compositional

expressions, e.g. « rock and roll »

» Word composition via vector operations,
i.e. build a vector for « red car » by combining word vectors « red » and « car »

WORD CO-0CCURENCE MATRICES 1/2

» Each line correspond to the « vector » of each word in the vocabulary
» Each column track to co-occurence count with other words

Construction

The matrix will be very sparse!

» Initialize the matrix to 0

» For each word in each sentence in a large corpus of text, increment the cell value of
observed context word

« The dog is eating. » Context word

cat CEL]e sleaping the

dog

cat

eating

Vocabulary

sleeping
the
IS

WORD CO-0CCURENCE MATRICES 2/2

Counting methods

» Window restriction: don’t look at the whole sentence but only a limited number of
surrounding words

> Syntactic restriction: use syntactic relations instead of fixed size window
+ count transformation, e.g. apply (positive) Pointwise Mutual Information (PMI)

Many words co-occur frequently and do

not carry useful semantic information,
e.g. «the », «a», «an»,...

Singular Value Decomposition (SVD)

» Co-occurence matrices are very big, sparse and noisy

» Use (truncated) SVD to keep only the « main directions » and reduce dimensionality
=> the resulting matrix is dense

EXAMPLE

[Sebastian Ruder]

05 | | | I | | | | |
_ _ — — slowest
0.4+ e
~ ‘slower - = - shortest
o R ——
03k .7 7shorter
slow« P
B
P
short«
0.2
01F
= B zstronger™ = TUTEE = o - strongest
/ S
« “Touder = T = = m memee m o &
strong < S loudest
-0.1F IOUd,A_/_ = =
“clearer T T T T — = — — —
5 s — — — —clearest
“goffel ™" = = s e
il — = — = softest
0.2 5 T
=V. glear =« _wedalkel T T s S o e 5
soft < - arkest
dark «
-0.3 | I I | | | ! | |

1 heiress 7
I
I i
I
! - countess
| / ;duchess—
| /
/
/
’ .
, / // /- empress
| £ /
, rmadam ;1 i
! r b
! heir T
/ / / =1
/ / /
/1
¢ {earl .
rqueerny /
f /dduke
[-
2
| ‘emperor
I
I
' pu—
[
L king 2

0.1 0.2 0.3 0.4 0.5

MULTI-LINGUAL WORD EMBEDDING Ruder et al, 2019)

1.0 Quor &, 1.0 g
erioen GRS | R -
_amib ﬁg PPo p “".;?-4 . L\n"h:l.l
intefessg _ 0 sodblmisaioonc genleo 0 ¢ -
2 ’aﬂml L o ‘ Pope I“"""f‘ Enen produzsane - S0
GabpoRetio “, i caRpnd) o
F PF"‘“?‘)&.‘{ ?k aginan roup A’?b-d pw& lan
a - bevind: L development ™
gruppo . w Bruppo svill 0
0.5 o nusiero W ..h ?{u;'n' 0.5} o
pm‘l:u ﬂmm’ by ; - rhet é\poﬂ
) dmﬁrmwmcr encrgy noey
o i O
- ot '“3“ Approach cobila soll
»&pmpk :f SFOOCK infoemats . St)w
B asticle 5’"&9 Ceommursciniiifite " et
0.0 noth -3 0.0 & camblamento S g.h;m\ 5 Eilt_ﬂﬁn .
. X M‘}*hm O scazione 4 iR ot jon
S peoBlema PP gpeoliliulons o (g&mﬂ! e
)ﬁn.-?ub’;‘! ?‘hl o dsdorso ey R é‘m my Ju"
A ‘mn‘pl&' ‘;ﬂﬂ‘ﬂn& 6‘omp~mon o 1Rk g& " ont &"'
ace saky, v "
vb"t’! APP{fihe Artick Ud:hm Jine competiz v Ll.-,,;,,\- v grisis & ninsdes cifx
I < infarmation usnbar famu. crisd .
0 3’"| " %’?M &8 il ticel 0 ﬂmﬂtn mane & " a e
05 it g R aaits ~05] oy pevsie g
o place . i !
Jrterost &ﬂ"ﬁcm Jaw F face pmlud’h naade ‘g;.l'n
5‘ nay W - _ beginning nocaerid nides
NWMV 5*%::1 n year - B
(((§ isis)‘m annd [e] ountry Bue A?e.xc
éumpmlhm h#(hu £i$v j(u"gd pact
,um, eace - | \)
—1.0 OV L 1‘0 !\7;3.!
~1.0 ~0.5 0.0 0.5 1.0 ~1.0 ~05 0.0 0.5 1.0

Figure 1: Unaligned monolingual word embeddings (left) and word embeddings projected
into a joint cross-lingual embedding space (right). Embeddings are visualized with t-SNE.

PREDICT MODELS

PREDICT MODELS [Mikolov et al, 2017

Main idea
» Train a (shallow) neural network for a simple word prediction task

» Use the learned input embeddings as pre-trained embeddings

Models
» Continuous Bag of Words (CBOW): predict a word given its context

» Skip-grams: predict the context of a word

Relation with language models

» We could use MLP or RNN language model to pre-train embeddings too

» But CBOW and Skip-grams are way faster!

CONTINUOUS BAG-0F-WORDS (CBOW) 1/2 [Mikolov et al, 2017

Operation principle
> Predict a word given its context

» The context is a limited window around (left and right) the word to predict

» There is no word order information (i.e. bag-of-word)

Word to predict

The dog 1s eating delicious food

Context words Context words

Objective

» Maximize the probability of the probability of the word to predict
=> Negative log likelihood loss

CONTINUOUS BAG-0F-WORDS (CBOW) 2/2 [Mikolov et al, 2017

Word to predict

The dog 1s eating delicious food

Context words Context words

| V| : vocabulary size

h :embedding size
E € R"™IVl : embedding table

z € R" :hidden representation

1/(® (@ (@ ®
Z=Z o +|® + |© + O)
o @© @ L

dog 1s delicious food

CONTINUOUS BAG-0F-WORDS (CBOW) 2/2 [Mikolov et al, 2017

Word to predict

The dog 1s eating delicious food

Context words Context words

| V| : vocabulary size W e RIVIX" : output projection
h :embedding size (also called output embedding table)

u € RV : output weights
E € R"™IVl : embedding table

Z

el

: O

h . . Very big

Z R : hidden representation atrix] O

J
.
1 0 O 0 - ®
z= ol+|@ + (@ + |@) o
o o o o .
dog 1s delicious food \le

SKIP-GRAMS 1/2 [Mikolov et al, 2017]

Operation principle
» Predict the context given a word

> The context is a limited window around (left and right) the word to predict

e

The dog 1s eating delicious food
Context words Context words
to predict to predict

» Maximize the probability of the probability of context words
=> Negative log likelihood loss for each context word

Objective

SKIP-GRAMS 2/2 [Mikolov et al, 2017

The dog 1s eating delicious food

Context words Context words
to predict to predict
eating
)
| V| :vocabulary size Very big :
h :embedding size matrix! o
X
hx|V| . : — i N
EcR : embedding table ® Y
W e RIVIX\ . output projection ‘ = 00 ®
(also called output embedding table) 0 (XX
u € R!Vl : output weights u W

Same weight vector for

all context words

ARCHITECTURE COMPARISON [Mikolov et al, 2017

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) ‘ w(t-2)
w(t-1) w(t-1)
\SUM
e w(t) w(t)

. .

w(t+1) w(t+1)

w(t+2) w(t+2)

CBOW Skip-gram

Issue: computing the loss function is very expensive!

ON NEGATIVE LOG
LIKELIHOOD LOSS WITH
LARGE VOCABULARIES

NEGATIVE LOG LIKELIHOOD LOSS

Given a context y, we want to maximize to probability of word x
» Language modeling: y can be the previous word, or the 2 previous words, etc.
» Skip-gram: y is the current word and x is a context word

» CBOW: y is the set of context word and x is the current word

exp(u(x,y))
Z(x,y) = —logp(x|y) = — log
> exp(u(x, y))
y is the input of the
Last hidden Z network used to
representation T compute z

z € R" Very big ®
u(-,y) € *U4I Output logits matrix! ®
X

)))

© o0 0 ©

W e RIVber Output o _|o0oo0e0 -

b e RIVIxm projection . +
9, (X)) 9
u(-,y) W b

NOISE DISTRIBUTION

Main idea
» We cannot manipulate p(x|y) directly (neither evaluate or sample from it)
» We can manipule the unnormalized distribution exp(u(x, y)) for a given x

» We can manipulate « simpler » noise distribution q(x) or q(x|y)

NOISE DISTRIBUTION

Main idea
» We cannot manipulate p(x|y) directly (neither evaluate or sample from it)
» We can manipule the unnormalized distribution exp(u(x, y)) for a given x

» We can manipulate « simpler » noise distribution q(x) or q(x|y)

Example of noise distribution

1
» Uniform distribution: ¢g(x) = m

n. occurence of x in data

» Unigram distribution: g(x) = :
num words in data

» Bigram, trigram... distributions

Note

There exists other methods that replace the output softmax qui with a different layer,
like hierarchical softmax => we won’t cover this in the lecture.

NLL GRADIENT

exp(u(x,y))

Partition function

V —logp(y|x) =V —log

NLL GRADIENT

V—logp(y|x) = V — log SR _ g 0 explulx, y))

z > exp(u(x’,y))

Partition function

NLL GRADIENT

eXp(u(xa y))
Z Y, exp(u(x’,))

-V (— u(x,y) + log Z exp(u(x’,)’)))

NLL GRADIENT

exp(u(x, y))
Z Y, exp(u(x’,))

-V (— u(x,y) + log Z exp(u(x’,)’)))

= — Vu(x,y) + Vlog Z exp(u(x’,y))

NLL GRADIENT

exp(u(x,y)) 00 exp(u(x,y))
z ¥ exp(u(x’,y))

-V (— u(x,y) + log Z exp(u(x’,)’)))

= — Vu(x,y) + Vlog 2 exp(u(x’,y))
X > Chain rule
1
= — Vu(x,y) + \ Z exp(u(x’, y))

2., exp(u(x’, y))

xl

NLL GRADIENT

exp(u(x,y)) 00 exp(u(x,y))
z ¥ exp(u(x’,y))

-V (— u(x,y) + log Z exp(u(x’,)’)))

= — Vu(x,y) + Vlog 2 exp(u(x’, y))
X > Chain rule
1
= — Vu(x,y) + \ Z exp(u(x’, y))

2., exp(u(x’, y))

xl

Chain rule

= — Vu(x,y) + %{ exp(u(x)) Vu(x',y)

xl

NLL GRADIENT

exp(u(x,y)) 00 exp(u(x,y))
z ¥ exp(u(x’,y))

-V (— u(x,y) + log Z exp(u(x’,)’)))

= — Vu(x,y) + Vlog 2 exp(u(x’, y))
X > Chain rule
1
= — Vu(x,y) + \ Z exp(u(x’, y))

2., exp(u(x’, y))

xl

1 Chain rule
= — Vu(x,y) + 7 exp(u(x’) Vu(x', y)
exp(u(x’))
/Z

— —Vu(x,y)+z VM(X,,y)

NLL GRADIENT

exp(u(x,y)) 00 exp(u(x,y))
z ¥ exp(u(x’,y))

-V (— u(x,y) + log Z exp(u(x’,)’)))

= — Vu(x,y) + Vlog 2 exp(u(x’, y))
X > Chain rule
1
= — Vu(x,y) + \ Z exp(u(x’, y))

2. exp(u(x’, y))

xl

1 Chain rule
= — Vu(x,y) + 7 exp(u(x’) Vu(x', y)
exp(u(x’))
/Z

v

= = Vu(x.y) +) p(x) Vu(x,y)

— —Vu(x,y)+z VM(X,,y)

MONTE-CARLO ESTIMATION

NLL gradient

V —logpx|y) =— Vulx) + ZP(X/D’)VM(X', y)

MONTE-CARLO ESTIMATION

NLL gradient

V —logpx|y) =— Vulx) + Zp(x’ly) Vulx',y) = — Vu(x,y) + [Ep(x,|y)[Vu(x’, y)]

1 2

1. Increase the score of the gold output Easy to compute!
2. Decrease the score of every other output Expensive for large output spaces!

MONTE-CARLO ESTIMATION

NLL gradient

V —logp(x|y) = — Vu(x) + ZP(X’Iy) Vux,y) =— Vux,y) + E, | Vul, y)|
/ ~ 1 ~ - 2 _

1. Increase the score of the gold output Easy to compute!
2. Decrease the score of every other output Expensive for large output spaces!

Monte-Carlo estimation of the second term

We can approximate the expectation in the second term with k samples:
1 k
XD x® e~ pxy)

[Vu(x') Z Vu(x®,y)

p(x y)

MONTE-CARLO ESTIMATION

NLL gradient

V —logp(x|y) = — Vu(x) + ZP(X’Iy) Vux,y) =— Vux,y) + E, | Vul, y)|
/ ~ 1 ~ - 2 _

1. Increase the score of the gold output Easy to compute!
2. Decrease the score of every other output Expensive for large output spaces!

Monte-Carlo estimation of the second term

We can approximate the expectation in the second term with k samples:

x(l), - ,x(k) ~ p(x|y) To sample, we need to compute u(x,y)

[Vu(x') Z Vu(x®, y)

p(x 8))

IMPORTANCE SAMPLING

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

V —logp(x|y) = — Vu(x,y) + Zp(x')vu(x', y)

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

V —logp(x|y) = — Vu(x,y) + Zp(x')vu(x', y)

px'|y)
g(x’)

= — Vu(x,y) + Z q(x’) Vu(x',y)

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

V —logp(x|y) = — Vu(x,y) + Zp(x')vu(x', y)

px'|y)
g(x’)

= — Vu(x,y) + Z q(x’) Vu(x',y)

px’)
g(x’)

- - Vu(xa y) + [Eq(x’)[Vu(x’, y)]

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

V —logp(x|y) = — Vu(x,y) + Zp(x’)Vu(x’, y)

p(Iy

= — Vu(x,y) + Z g(x) Vu(x',y)

p(x)

= — Vu(x,y) + E q(x)[= ZEBIIE™ The expectation here is over q(x)

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

V —logp(x|y) = — Vu(x,y) + Zp(x’)Vu(x’, y)

p(Iy

= — Vu(x,y) + Z g(x) Vu(x',y)

= — Vu(x,y) + [Eq(x)[(—; Vu(x',y)| The expectation here is over q(x)

Monte-Carlo estimation

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

V —logp(x|y) = — Vu(x,y) + Zp(x’)Vu(x’, y)

p(Iy

= — Vu(x,y) + Z g(x) Vu(x',y)

= — Vu(x,y) + [Eq(x)[(—; Vu(x',y)| The expectation here is over q(x)

Monte-Carlo estimation

xR~ q(x)

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

V —logp(x|y) = — Vu(x,y) + Zp(x’)Vu(x’, y)

p(Iy

= — Vu(x,y) + Z g(x) Vu(x',y)

= — Vu(x,y) + [Eq(x)[(—; Vu(x',y)| The expectation here is over q(x)

Monte-Carlo estimation

xR~ q(x)

p() PO
q(x)[V u(x)] — Zq(x)vu(x)

IMPORTANCE SAMPLING

Intuition

Instead of sampling from p(x | y), we sample from a « simpler » distribution q(x)

V —logp(x|y) = — Vu(x,y) + Zp(x’)Vu(x’, y)

p(Iy)

= — Vu(x,y) + Z g(x) Vu(x',y)

= — Vu(x,y) + [Eq(x)[(—; Vu(x',y)| The expectation here is over q(x)

Monte-Carlo estimation

Easy because of the premise! :)
xR~ q(x)

We still need to compute the partition Z for the numerator :(

q(x)[p()V u(x)| = Zp() (e

g(x’)

SELF-NORMALIZED IMPORTANCE SAMPLING 1/2

/ / / / / p(x,ly) /
SRR B D W DALCOR DIt LR Importance sampling

SELF-NORMALIZED IMPORTANCE SAMPLING 1/2

%

: : : , PO o
SRR B D W DALCOR DIt LR Importance sampling

NS :
2, 4)Z(i,) Vu(x', y)

2. P1Y) =1 (because p is a probability distribution)

SELF-NORMALIZED IMPORTANCE SAMPLING 1/2

%

: : : , PO o
SRR B D W DALCOR DIt LR Importance sampling

/ (x) /
2, 4)Z(i,) Vu(x', y)

2. P1Y) =1 (because p is a probability distribution)

NP Y) ,
2., 40— Vul', y)

o PEY)
zx” q(’x) q(x//)

Same trick as in the numerator

SELF-NORMALIZED IMPORTANCE SAMPLING 1/2

%

: : : , PO o
Epiety [P0 1) Vule,)] = 2 pOe'1) Vule') = 2 a(e)=3= Vul'y) <RIty rTne

/ (x) /
2.4)Z(i,) Vu(x', y)

2. P1Y) =1 (because p is a probability distribution)

~ P y) ,
2., 40— Vul', y)

1Zi p(x//ly)
zx” q(x) q(x//)

Same trick as in the numerator

N Z 7 exp(u(x,y)))
Zx’ q(x) qg(x') Vulxsy) The partition function appear as

i 27 exp(u(x”)) constant wrt summations!
Zx” Q(x) q(x//)

SELF-NORMALIZED IMPORTANCE SAMPLING 1/2

%

: : : , PO o
Epiety [P0 1) Vule,)] = 2 pOe'1) Vule') = 2 a(e)=3= Vul'y) <RIty rTne

/ (x) /
2, 4)Z(i,) Vu(x', y)

2. P1Y) =1 (because p is a probability distribution)

N PEY))
Zx/ q('x) q(x/) Vu(x 9 y)

o PEY)
zx” q(x) q(x//)

Same trick as in the numerator

N Z 7 exp(u(x,y)))
Zx’ q(x) qg(x') Vulxsy) The partition function appear as

i 27 exp(u(x”)) constant wrt summations!
Zx” Q(x) q(x//)

» e) o
27 X 40— Vuy)

N exp(u(x”))

-1 1
2 Y4 —

SELF-NORMALIZED IMPORTANCE SAMPLING 1/2

/ / / / / p(xlly) /
Epiety [P0 1) Vule,)] = 2 pOe'1) Vule') = 2 a(e)=3= Vul'y) <RIty rTne

N P& /
2. qx)Z (i,) Vu(x',y)

2. P1Y) =1 (because p is a probability distribution)

N PEY))
Zx/ q('x) q(x/) Vu(x 9 y)

1Zi p(x//ly)
zx” q(x) q(x//)

Same trick as in the numerator

N Z 7 exp(u(x,y)))
Zx’ q(x) qg(x') Vulxsy) The partition function appear as

i 27 exp(u(x”)) constant wrt summations!
Zx” Q(x) q(x//)

_ ;\ EXPu(x’,) ,
Al zx/ Q(x) q(x/) V u(x 2 y) - .
— ; No partition function anymore!
") exp(u(x”))

X,)

SELF-NORMALIZED IMPORTANCE SAMPLING 2/2

~ exp(u(x’, y)) ,
Y g(x)————=Vu(x,y)
E | Vux',y)] = — o
p(’x) ? z (,/) eXp(u('x”))
x" A q(x”)

No partition, but still an expensive sum! :(

SELF-NORMALIZED IMPORTANCE SAMPLING 2/2

~ exp(u(x’, y)) ,
2. g —— Vu(x',y)
E | Vux',y)] = — o
p(’x) ? z (,/) eXp(u(‘x”))
o I q(x")

exp(u(x’,y)) Vulx ,)]

[EQ(x,) l q(x’) :
- S Expectations over q

S

No partition, but still an expensive sum! :(

SELF-NORMALIZED IMPORTANCE SAMPLING 2/2

~ exp(u(x’, y)) ,
Y g ———=Vu(xy)
E | V¥, y)] = — o
() ’ S o) exp(u(x”))
S AT

exp(u(x’, y)))
[EQ(x')[g(x) Vu(x)]

= S Expectations over q

S

No partition, but still an expensive sum! :(

Monte-Carlo estimation

1 ~n expu(x?)) (i)
n Hi=1 g(x®) Vu@x))]

No partition! :)
Ly exp(u(x) We say that the target distribution
n ==l g(x®) Is unnormalized.

SELF-NORMALIZED IMPORTANCE SAMPLING 2/2

~ exp(u(x’, y)) ,
2. g — Vu(x',y)
E | Vux',y)] = — o
px’) ’ Z (x") exp(u(x”))
x/’ q x q(x//)

exp(u(x’, y)))
[EQ(x')[g(x) Vu(x)]

= S Expectations over q

S

No partition, but still an expensive sum! :(

Monte-Carlo estimation

xD L x® ~ g(x) Easy because of the premise! :)

(i ,
%22;1 S Vu(x“))]

(x®) No partition! :)
E | Vulx")| ~ 1 , DR
p(x)[u(x)] 1 % exp(u(x)) We say that the target distribution
nHi=1 g(x) Is unnormalized.

Weighted importance sampling (same thing, different notation)

I 5 ' ' . (0
Epo[V)] = 22 Y w) Vute®) where wix®) = expu(x?))

P g(xD)
Weight instead of probability

and W= Z w(x?)
i=1

NOISE CONTRASTIVE ESTIMATION (NCE) 1/5

Motivation Can be arbitrary large! :(

» Self-normalized importance sampling is unbounded: [Ep(xf)[Vu(X')] = Z w(x D) V u(x D)
i=1

» NCE change the problem into a binary classification task

Intuition

» We want to use the gold word positive reinforcement
but only a few other words as negative reinforcement

» We want to keep theoretical guarantee (i.e. convergence guarantee)

» We cannot sample from p(x | y) so we use a noise distribution q(x)

Joint distribution over observed and noisy words

Let D be a random variable indicating if a given word is from the data distribution (D=1) or
from the noise distribution (D=0)

x|y p(D=0)xqkx) ,ifD=0
s X = .
PETTZ o = xpely) L ifD=1

NOISE CONTRASTIVE ESTIMATION ILLUSTRATION 1

: 1 pH_ _k_
Samples come from the mixture 5P, + ;7 Pn

(sorry, different notations!)

NOISE CONTRASTIVE ESTIMATION 2/5

ity 2 [PO=0xg0 D=0
o X = .
PEIIZY o = Yxpely) L ifD=1

Let assume that we want to use k words for negative reinforcement, then we have:

k 1
pD=0)=71 riD=D="

For each gold word we
sample k noisy words

NOISE CONTRASTIVE ESTIMATION 2/5

dx|v) p(D=0)xqx) ,ifD=0
o X = .
PETIZA op =)xpiely) L ifD =1

Let assume that we want to use k words for negative reinforcement, then we have:

k 1
pD=0)=71 riD=D="

For each gold word we
sample k noisy words

Binary classification problem

pd=0]|x,y) pld=1]|x)

NOISE CONTRASTIVE ESTIMATION 2/5

dx|v) p(D=0)xqx) ,ifD=0
o X = .
PETIZA op =)xpiely) L ifD =1

Let assume that we want to use k words for negative reinforcement, then we have:

k 1
pD=0)=71 riD=D="

For each gold word we
sample k noisy words

Binary classification problem

p(d=0,x|y)
d=0|x,y) = d=1
=01y = o+ pd =1y P

NOISE CONTRASTIVE ESTIMATION 2/5

dx|v) p(D=0)xqx) ,ifD=0
o X = .
PETIIZN o = Y xpely) L ifD=1

Let assume that we want to use k words for negative reinforcement, then we have:

k 1
pD=0)=71 riD=D="

For each gold word we
sample k noisy words

Binary classification problem

p(d=0,x|y)
d=0|x,y) = d=1
=01y = o+ pd =1y P

k
79X

% 1
79%) + 1 px]y)

NOISE CONTRASTIVE ESTIMATION 2/5

dx|v) p(D=0)xqx) ,ifD=0
o X = .
PETIIZN o = Y xpely) L ifD=1

Let assume that we want to use k words for negative reinforcement, then we have:

k 1
pD=0)=71 riD=D="

For each gold word we
sample k noisy words

Binary classification problem

p(d=0,x|y)
d=0|x,y) = d=1
=01y = o+ pd =1y P

k
WQ(X)
?kﬂ(x) + k/%p(x)

_ kq(x)
kq(x) + p(x|y)

NOISE CONTRASTIVE ESTIMATION 2/5

dx|v) p(D=0)xqx) ,ifD=0
o X = .
PETIIZN o = Y xpely) L ifD=1

Let assume that we want to use k words for negative reinforcement, then we have:

k 1
pD=0)=71 riD=D="

For each gold word we
sample k noisy words

Binary classification problem

pd=0,x|y) p(d=1x]y)
d=0]x, = d=1 —
=0 = ot pd=1xly PN a0 = iy
_ Vqum
?kﬂ(x) + k/%p(x)
kq(x)

~ kg0 + p(x])

NOISE CONTRASTIVE ESTIMATION 2/5

dxly p(D=0)xqx) ,ifD=0
o X = .
PEIT= pio =)xpixly) ,ifD=1

Let assume that we want to use k words for negative reinforcement, then we have:

k I
P =0)=""7 pib=D=-""7

For each gold word we
sample k noisy words

Binary classification problem

pd=0,x|y) p(d=1x]y)
d=0|x,y) = d=1 =
=0y = o apd=1xy PN = a0 = Tx 1y
k 1
_ WCI(X) _ —TPx1Y)
V%Q(X) + k/%p(xly) ——=q(x) + —=p(x])
kq(x)

~ kg0 + p(x])

NOISE CONTRASTIVE ESTIMATION 2/5

dxly p(D=0)xqx) ,ifD=0
o X = .
PEIT= pio =)xpixly) ,ifD=1

Let assume that we want to use k words for negative reinforcement, then we have:

k I
P =0)=""7 pib=D=-""7

For each gold word we
sample k noisy words

Binary classification problem

p(d=0,x]y) pd=1x|y)
d=0]|x,y) = d=1 -
A=y = o +pd=1xly PO a0y =121y
k 1
_ WCI(X) _ ,%—IP(XW)
V%Q(X) + k/%p(xly) T + T p(x|y)
kq(x) p(x|y)

B kg(x) + p(x]y) - kg(x) + p(x|y)

NOISE CONTRASTIVE ESTIMATION 3/5

Partition function

» NCE assume the partition function is a learned parameter
i.e. we don’t compute it, so the p(x|y) may not be a valid distribution

» There is one partition parameter per datapoint in the dataset

» An usual trick is to fix all of them to 1 when the dataset is large

k p(x|y)
p(D = 0] x,) = —— 2 pD =0|x,y) = |
kg(x) + p(x|y) kq(x) + p(x|y) Z(x,y) is a learned
exp(ux. y)) parameter here
kq(x) T
— (xay)
X)) B XPUC,)
Kq) + =70 kq(x) + 2=

Z(x,y)

NOISE CONTRASTIVE ESTIMATION 3/5

Partition function

» NCE assume the partition function is a learned parameter
i.e. we don’t compute it, so the p(x|y) may not be a valid distribution

» There is one partition parameter per datapoint in the dataset

» An usual trick is to fix all of them to 1 when the dataset is large

k px|y)
p(D =0]x.y) = ——L pD=0]x,y) = |
kg(x) + p(x|y) kg(x) + p(x|y) Z(x,y) is a learned
exp(ux. y)) parameter here
kq(x) T
— (x,y)
kg(x) + 220 N X, y)) -
9 Z(6,y) kq(x) + —— Assume the partition
k() exp(iu(x, y)) function is always

equal to 1

N kq(x) + exp(u(x,y)) - kq(x) + exp(u(x, y))

NOISE CONTRASTIVE ESTIMATION 3/5

Partition function

» NCE assume the partition function is a learned parameter
i.e. we don’t compute it, so the p(x|y) may not be a valid distribution

» There is one partition parameter per datapoint in the dataset

» An usual trick is to fix all of them to 1 when the dataset is large

k p(x|y)
p(D =0 x,y) = — LD pD =0|x,y) = |
kg(x) + p(x|y) kg(x) + p(x|y) Z(x,y) is a learned
exp(ux. y)) parameter here
- kq(x)((7)) = e
exp(u(x,y o exp(u(x, y)) o
kg + =255 kq(x) + I;(x’ y)y Assume the partition
function is always
_ kq(x) _ exp(u(x, y)) equal to 1
kq(x) + exp(u(x, y)) kq(x) + exp(u(x, y))

» Even if we use an un-normalized probability distributions,
p(d|x, y) is always between 0 and 1 and is a valid distribution

» When the number of negative samples goes to infinity, it is equivalent to NLL

NOISE CONTRASTIVE ESTIMATION ILLUSTRATION 2

P, (w|H)
Pyo(w|H)+kPy,(w)

Py(w|H)
Py (w|H)+ kP, (w)

Objective: maximizing the likelihood of classitying {w, i, ..., Wy}

(sorry, different notations!)

NOISE CONTRASTIVE ESTIMATION 4/5 [Mnih and Teh, 2012]

Table 1. Results for the LBL model with 100D feature vec- Table 2. The effect of the noise distribution and the num-
tors and a 2-word context on the Penn Treebank corpus. ber of noise samples on the test set perplexity.
TRAINING NUMBER OF | TEST | TRAINING NUMBER OF PPL uUSING PPL usING
ALGORITHM SAMPLES | PPL | TIME (H) SAMPLES | UNIGRAM NOISE | UNIFORM NOISE

ML 163.5 21 1 192.5 291.0

NCE 1| 192.5 1.5 5 172.6 233.7

NCE 51 172.6 1.5 25 163.1 195.1

NCE 25 | 163.1 1.5 100 159.1 173.2

NCE 100 | 159.1 1.5

NOISE CONTRASTIVE ESTIMATION 5/5 [Labeau and Allauzen, 2017

Unigram distribution smoothing

A distortion coefficient 0 < a < 1 is used to smooth the noise distribution increase the
probability to sample rare words

(n. occurence of x in data)”

q(x) =
VA
40
k 25 100 200 500 35{\ |
Uniform 209 105 8.1 7.1 30 0 —-— afo e
Unigram 29.7 329 305 185 25} . —e— a=0.
Unigram (o = 0.25) | 250 81 69 6.6 ig —¥- a=05
Bigram 66 65 65 65 o a=0.75
lg Y a=1
Table 1: Negative log-likelihood after one epoch 0
of training with a full vocabulary, for various noise 0 1 ? 3 4 5
distributions and a varying number of noise sam-
ples k Figure 2: Comparative training of full vocabulary

models with £ = 100 noise samples for a varying
distortion, on 5 epochs.

NEGATIVE SAMPLING [Mikolov et al, 2013

Idea

» Replace the NLL with a binary classification task

> Positive examples come from the data, negative example from the noise distribution

) - 1 B B GXP(M(X’ y))
p(D=0lxy) = 1 + exp(u(x, y)) =t = 1+ exp(u(x, y))

Warning

> It is a surrogate loss, it is not consistent with negative log likelihood

» It can be used to train word embeddings

> It is inadequate to train langage model (i.e. optimize the wrong objective)

CONTEXT SENSITIVE
WORD EMBEDDINGS

NEURAL NETWORK PRE-TRAINING

Main idea

» Word embeddings may be useful on their own, but they are widely use to pre-train
embedding table to increase accuracy, especially regarding out-of-vocabulary word

» Can we pre-train « more » than just word embeddings?

=

Most popular pre-trained architectures

» ELMO

» GPT We will not cover this one

» BERT

ARCHITECTURE COMPARISON [Deviin et al., 2019)

EMBEDDINGS FROM LANGUAGE MODELS (ELMO) tpecers et 20151

Main idea

» Train a bi-directional language model based on LSTMs

Backward LSTM

» Each LSTM as several layer

Probability of a sentence

p(tht?a' . 7tN) — Hp(tk | t1,12,. "7tk—1)
k=1

N

p(t17t27' . 7tN) — Hp(tk | tk+17tk+27” . 7tN)
k=1

Training loss function
N

(lng(tk | b1y e oy ti—1; @wa 6L.S'TM7 @S)
k=1

_|_10gp(tk | tk—|—17 N A @m, gLSTM) @S))
Links

> https://allennlp.org/elmo

> https://allenai.github.io/allennlp-docs/api/allennlp.modules.elmo.html

https://allennlp.org/elmo
https://allenai.github.io/allennlp-docs/api/allennlp.modules.elmo.html

EMBEDDINGS FROM LANGUAGE MODELS (ELMO) tpecers et 20151

Multi-layer RNN

» Each layer as its own set of learn parameters
» Each direction as its own set of parameters

> In practice, the model is trained with 3 layers in each direction

h®") RPN o) S WO X N WX
e 4 S a-d
ayer 2 I:l hZ?_ en I—>I—> — | —
o S TS N
T T 0 f 1
x(1-) The dog is eating
Word input

» No word embeddings

» Character embeddings combined via a character CNN

EMBEDDINGS FROM LANGUAGE MODELS (ELMO) tpecers et 20151

How to use it in practice

» Concatenate hidden layers of the forward and backward LSTMs

» Do a parameterized convex combination of layers

» The ELMo LSTMs can either be fixed or fine-tuned

h“) . hidden layer of the forward LSTM at layer 1 for word at position i

(E(l,i) : hidden layer of the forward LSTM at layer 1 for word at position i

L L
h(i)=2a(1)xh(l’i) aE{aERL|2a1=1andVl:alZO}
I=1 I=1

Context sensitive Simplex constraint
embedding for word i

You need to install

import allennlp.modules.elmo as elmo :
P E the AllenNLP lib

init method of a module
def init (self)
self.elmo = elmo.E1lmo (

options file=path to options,
weight file=path to weights,
how many convex combination do you want?
num output representations=1,
set to true at training time

1f you want to fine-tune Elmo weights The convex combination

requires_grad=False, parameters will have a gradient
do layer norm=False,

keep sentence boundaries=False,
dropout=0.

)
to get the output hidden dimension:

#self.elmo.get output dim()

You need to install

import allennlp.modules.elmo as elmo .
P F the AllenNLP lib

init method of a module
def init (self)
self.elmo = elmo.E1lmo (

options file=path to options,
weight file=path to weights,
how many convex combination do you want?
num output representations=1,
set to true at training time

1f you want to fine-tune EImo weights The convex combination

requires_grad=False, parameters will have a gradient
do layer norm=False,

keep sentence boundaries=False,
dropout=0.

)
to get the output hidden dimension:

#self.elmo.get output dim()

def forward(elmo inputs):
elmo inputs should be a list of list of string
e.g. [["Sentence", "n.", "1"], ["Sentence", "n.", "2"]]

elmo inputs = elmo.batch to ids(elmo 1nputs)
move to GPU if needed
elmo inputs = elmo inputs.to(self.elmo.scalar mix O.gamma.device)

#A-acompute representation!
elmo output = self.elmo(elmo inputs) ['elmo representations'][0])

BERT: DEEP BIDIRECTIONAL TRANSFORMERS [Devlin et al., 2019)

Main idea

» Use a (big) transformer instead of a LSTM
» Use (trained) subword segmentation instead of word or char embeddings
» Use learned position embeddings
» Use two objective function:
1. Masked language model

2. Next sentence prediction (some variants don’t)

Many variants

» Cased/uncased English BERT
» Multilingual BERT

» French Bert: CamemBERT and FlauBERT

INRIA (+ Facebook) m

BERT: DEEP BIDIRECTIONAL TRANSFORMERS [Devlin et al., 2019)

Training data

» Introduce [CLS] token at the beginning of each sentence
» End sentence with the [SEP] token
» Randomly replace a subset of tokens with the [MASK] token

» Add the correct next sentence or a randomly sampled sentence from the corpus

Iﬂpl.lt = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = rsnext

IIlpllt — [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight f#fless birds [SEP]
Label = notnext
Training objective

> Predict masked tokens, i.e. word that have randomly been replaced with [MASK]

» Predict from the context sensitive embedding of [CLS] if the second sentence is correct

BERT: DEEP BIDIRECTIONAL TRANSFORMERS [Devlin et al., 2019)

Input cLs] | | my || dog is [cute] [SEP] || he [likes][play] ##ing] [SEP]

Token

Embeddings E[CLS] Emy Edog is Ecute E[SEP] Ehe Elikes Eplay #%ing E[SEP]
-+ -+ + + + -+ + + + + +

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + + + +

Position

Embeddings E0 E1 Ez E3 E4 ES E6 E7 E8 E9 Elo

> You may have more than one embedding per word!
Either use the first or last token embedding for each word

» For sentence classification, you can use the [CLS] embedding

» Similar to ELMO, you can learn a convex combination of several layers instead of
using the laster layer

BERT: DEEP BIDIRECTIONAL TRANSFORMERS Le et al, 2019]

BERT} s RoBERTag s CamemBERT FlauBERT ;s
Language English English French French
Training data 13 GB 160 GB 138 GB' 71 GB?
Pre-training objectives NSP and MLM MLM MLM MLM
Total parameters 110 M 125 M 110 M 137M
Tokenizer WordPiece 30K BPE 50K SentencePiece 32K BPE 50K
Masking strategy Static + Sub-word masking | Dynamic + Sub-word masking | Dynamic + Whole-word masking | Dynamic 4+ Sub-word masking

T, 7. 282 GB, 270 GB before filtering/cleaning.

Table 1: Comparison between FlauBERT and previous work.

