Introduction a |'apprentissage automatique - Polytech
Empirical risk minimization

Caio Corro

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique,
91400, Orsay, France

1/32

Theory

2/32

Problem

Train/test objective mismatch

P> At training time we minimize a loss function, e.g. the hinge loss

P> At test time we evaluate the model using a different function,
e.g. classification error / classification accuracy

There is a mismatch between the two objective!

Goal

Can we prove that minimizing a given loss function also minimizes the test time
objective?

3/32

Assumptions

R R {0,1}or {—1,1}

y=3w)

Input space Score/weight/logit space Qutput space

» We assume the class of scoring functions S is “rich enough”
(i.e. set of all measurable mappings)

P> We assume we have access to an infinite number of training datapoints
4/32

0-1 loss function

Definition of the 0-1 loss function
Count the number of classification errors
= exactly what we aim to minimize at test time

Binary classification
> If Y ={0,1}: lo_1(y,w)=1[(2y — 1)w < 0] = [sign(w) # 2y — 1]
> If Y ={-1,1}: flo_1(y,w) = 1[y x w < 0] = [sign(w) # y]

Multiclass classification
> If Y = E(k):
0 if y=argmax, w,y'),
bo-1(y, w) = Y . Bmaxyce(o(W:¥)
1 otherwise.
> IfY ={1,.., k)

lo—1(y,w) = 1]y # argmax wy/]
y'e{1,....k}
5/32

Bayes risk

Notations
» x: random variable representing inputs in R
» y: random variable representing outputs, problem dependent
» p(x,y): data distribution, unknown in practice but we can still use it for theory

> S: set of scoring functions

WARNING
The input/output mapping in the data distribution is not necessarily deterministic, an
input x € RY may be associated with several outputs with a non null probability.

6/32

Bayes risk

Notations
» x: random variable representing inputs in R
» y: random variable representing outputs, problem dependent

» p(x,y): data distribution, unknown in practice but we can still use it for theory

> S: set of scoring functions

WARNING

The input/output mapping in the data distribution is not necessarily deterministic, an
input x € RY may be associated with several outputs with a non null probability.

Risk of a scoring function
The risk of a given scoring function s € S is denoted:

r(s) = Exy[fo-1(y,s(x))]

or, in other words, it is the classification error probability for classifier based on s.
7/32

Minimum Bayes risk

Risk of a scoring function

The risk of a given scoring function s € S is denoted:

r(s) = Exy[lo-1(y,s(x)) |
or, in other words, it is the classification error probability for classifier based on s.

Minimum Bayes risk
It seems that it is a good idea to aim for a model of minimum Bayes risk:

rf = ;21; r(s) = ;ggExy[lo-1(y,s(x)) |
= SIEEEX[Eyx[fo-1(y,s(x))]]

=E,[1- Teagp(y = y[x) |

8/32

Surrogate losses

Recall
In practice we cannot use the 0-1 loss:

P non-convex
P partial derivatives are null almost everywhere

It is known that minimizing the 0-1 loss is a NP-hard problem (Ben-David et al., 2003;
Feldman et al., 2009)

Main idea
> Replace the 0-1 loss with a surrogate loss

» hope (prove?) that minimizing the surrogate loss leads to a classifier of minimum
Bayes risk

9/32

Classification calibration

Surrogate risk
Let ¢ be a surrogate loss.

The surrogate risk 7(s) of scoring function s € S is defined as:

r(s) = Exy[£y, s(x)) |,

and the optimal surrogate risk ¥* is defined as:

7= inf 7(s) = inf Exy[Ay, s(x))]

10/32

Classification calibration

Surrogate risk

Let ¢ be a surrogate loss.
The surrogate risk 7(s) of scoring function s € S is defined as:

7(s) = Exy[£(y, s(x))],

and the optimal surrogate risk ¥* is defined as:

rr = inf 7(s) = inf Exy[£(y, s(x))]
Definition N
A surrogate loss £ is said to be classification calibrated if and only if:

s* €argminr(s) = r(s*) =r",
ses

i.e. minimizing the surrrogate risk leads to a prediction model of optimal Bayes risk.
This property is also called Bayes consistency and Fisher consistency. 1132

Pointwise analysis 1/2

Assumption

We assume the class of scoring function S is “rich enough”
(i.e. set of all measurable mappings)

r* =infr(s) = siggEx,y[to-1(s(x),y) |

seS
i (x)
VXEX:”I/F(X)GRk Ex [Eylx[lo—1(y, w™) |]

= Ex { W(ipe]ch IEy|x { lo-1(y, W(X)) }]

We can focus on this part only

12/32

Pointwise analysis 1/2

Assumption

We assume the class of scoring function S is “rich enough”
(i.e. set of all measurable mappings)

Pointwise risk
Let x € X such that p(x = x) > 0. We redefine the concept of (optimal)
surrogate/Bayes risk as follows:

F(W) = IE"y|x:x[gO—l(Ya W)] F(W) =]Ey\x:x[f(y) W)]
- -

where w € R¥ should be interpreted as the output of the scoring function, i.e.
w = s5(x).

13/32

Classification calibration for binary classification

Surrogate losses

Let Y ={-1,1}.
Perceptron loss: Zperceptron(y, w) = max(0, —y x w)
Hinge loss: fhinge(y, w) = max(0,1 — y x w)

2

Exponential loss: zexp(y7 w) = exp(—y X w)

>
>
» Squared hinge loss: /. hinge(y> W) = max(0,1 —y x w)
>
» Negative log-likelihood (NLL): £ni(y, w) = log(1 + exp(—y x w))
>

Quadratic error (or squared error): unad_(y, w)=(y xw—1)?

Classification calibration
All these surrogate losses are classification calibrated except the perceptron loss.

14/32

Classification calibration for binary classification

Surrogate risk
F(W) = IEy|x:x[E(y’ W)]

=ply=1x=x) x{l,w) + ply=-1x=x)x-1,w)

)
:,UXE(].,W) + (1_M) XZ(_]-?W)
where 1 = p(y = 1|x = x).
The optimal surrogate risk is:

rt = v:/ng r(w) = eréfR wxl(Lw) 4+ (1 —p) x(—1,w)

15/32

Classification calibration for binary classification

Surrogate risk
7(W) = IE:y|x:x[f(y, W)]

=ply=1x=x) x{l,w) + ply=-1x=x)x-1,w)
=uxl1w) + (1—p)x-1,w)

where © = p(y = 1|x = x).

The optimal surrogate risk is:

= Ml/rél];{ Fw) = ngfR X (1,w) 4+ (1—p) x (-1, w)
Intuition B
The surrogate loss £ is classification calibrated if the minimzer w* satisfies:
» 1 >05 = w* >0 (the class 1 is the most probable class for input x)
» 11 <05 = w*" <0 (the class 1 is the most probable class for input x)

» 1 = 0.5: this case is not important.

16/32

def hinge(y, w):
return max(0, 1 -y * w)

mu = 0.7
ws = np.linspace(-3, 3, 100)
1s = [mu * hinge(1, w) + (1 - mu) * hinge(-1, w) for w in ws]

plt.plot(ws, 1s)

[<matplotlib.lines.Line2D at 0x10f41f0a0>]

2.51

2.0 4

1.5 1

1.0

0.5 T T T

17/32

[5]:

[5]:

def hinge(y, w):
return max(0, 1 -y * w)

mu = 0.3
ws = np.linspace(-3, 3, 100)
1s = [mu % hinge(1, w) + (1 - mu) * hinge(-1, w) for w in ws]

plt.plot(ws, 1s)

[<matplotlib. lines.Line2D at 0x10f2313c0>]

2.5

2.01

1.5

1.0 1

0.5 T T T

-3 -2 -1 0 1 2

18/32

def hinge(y, w):
return max(@, 1 -y * w)

mu = 0.5
ws = np.linspace(-3, 3, 100)
1s = [mu * hinge(1, w) + (1 - mu) * hinge(-1, w) for w in ws]

plt.plot(ws, 1s)

[<matplotlib.lines.Line2D at 0x10ff3c820>]

2.0 1

1.8

1.6 1

144

1.2 1

1.0 1

19/32

def nll(y, w):
return np.log(1l + np.exp(- y * w))
mu = 0.7
ws = np.linspace(-3, 3, 100)
1s = [mu % nlU(1, w) + (1 = mu) * nll(-1, w) for w in ws]

plt.plot(ws, 1s)

[<matplotlib. lines.Line2D at 0x10ff9e290>]

2.24

2.0 1

1.8

1.6 1

1.4 1

1.2 1

1.0 1

0.8

0.6

-3 -2 -1 0 1 2

20/32

def nll(y, w):
return np.log(1l + np.exp(- y * w))

mu = 0.3

ws = np.linspace(-3, 3, 100)

1s = [mu * nlU(1, w) + (1 = mu) * nll(-1, w) for w in ws]
plt.plot(ws, 1s)

[<matplotlib.lines.Line2D at 0x11002ded0>]

2.2 4

2.0 1

1.8

161

144

124

1.0 A

0.8

0.6

21/32

def nll(y, w):
return np.log(1l + np.exp(- y * w))

mu = 0.5
ws = np.linspace(-3, 3, 100)
1s = [mu * nl1(1, w) + (1 = mu) * nll(-1, w) for w in ws]

plt.plot(ws, 1s)

[<matplotlib.lines.Line2D at 0x1100b94b0>]

1.4+

1.2 A

1.0 A

0.8

22/32

def perceptron(y, w):
return max(0, - y * w)

mu = 0.7
ws = np.linspace(-3, 3, 1000)
1s = [mu * perceptron(l, w) + (1 - mu) * perceptron(-1, w) for w in w

plt.plot(ws, 1s)

[<matplotlib.lines.Line2D at 0x110325a80>]

2.0 1

154

104

0.5 4

0.0 4

-3 -2 -1 0 1 2 3

23/32

=
C

def perceptron(y, w):
return max(@, - y * w)

mu = 0.3
ws = np.linspace(-3, 3, 1000)
1s = [mu * perceptron(1l, w) + (1 - mu) * perceptron(-1, w) for w in ws

plt.plot(ws, 1s)

[<matplotlib.lines.Line2D at 0x11039ad70>]

2.0

154

1.0 4

0.5

0.0

-3 -2 -1 0 1 2 3

24/32

[16]:

[16]:

def perceptron(y, w):
return max(0, - y * w)

mu = 0.5
ws = np.linspace(-3, 3, 1000)
1s = [mu * perceptron(1, w) + (1 - mu) * perceptron(-1, w) for w in ws]

plt.plot(ws, 1s)

[<matplotlib.lines.Line2D at 0x1104156f0>]

1.4 1

1.2 1

1.0

0.8

0.6

0.4

0.2

0.0 A

25/32

Sufficient conditions in the binary case

Let £ : {—1,1} x R — R} be a surrogate loss function that can be rewrittent as:

t(y, w) = o(yw)
where ¢ : R — R is function.

=> all previously presented binary loss function can be rewritten under this form.

Theorem
If ¢ is convex and differentiable at 0 with ¢'(0) <0,
then ¢ is classification calibrated

Proof
See (Lin, 2004).

26 /32

Classification calibration for multiclass classification

Surrogate losses
Let Y = E(k).

» Hinge loss: Ehinge(y, w) = max (0, 1 —(y, w) + maxyceq {y3 (Y w>)
> NLL: Loy, w) = —(y, w) + log 3, exp(w;)

Properties without proof

In the multiclass classification case:

» The hinge loss is not classification calibrated, see (Liu, 2007)

» The NLL loss is classification calibrated, see exercises

27/32

Strictly proper losses 1/2
Probabilistic prediction model

> We saw that we can learn models that predict a probability distribution over
outputs, e.g. ps(y|x), where the s emphasize that this is the learned model
distribution, parameterized by the scoring function s.

» Classification calibration means the the most probable output in the data
distribution will also be the most probable output in the model distribution

> We may want a stronger property: that the two distributions are equal

28/32

Strictly proper losses 1/2
Probabilistic prediction model

> We saw that we can learn models that predict a probability distribution over
outputs, e.g. ps(y|x), where the s emphasize that this is the learned model
distribution, parameterized by the scoring function s.

» Classification calibration means the the most probable output in the data
distribution will also be the most probable output in the model distribution

> We may want a stronger property: that the two distributions are equal

Definition

Let p(y, x) be the data distribution and ps(y|x) the model distribution. In the
pointwise setting, a surrogate loss { is classification calibrated if and only if the
scoring function s* that minimizes the surrogate risk leads to a model distribution
equal to the data distribution:

VyeY: ps(y=ylx=x)=p(y=ylx=x).

29/32

Strictly proper losses 1/2

Remarks
» Strict properness implies classification calibration

» The support of the data distribution must be “representable” by the model
distribution

» The NLL loss is strictly proper for models whose probability parameters are
computed using the sigmoid/softmax function if the conditional data
distribution has full support.

30/32

Risk minimization decomposition

Practical issues
» We only have access to a finite training dataset
» The set of function S is not the set of all measurable mapping
» The learning algorithm may not find the optimal classifier s € S,
i.e. the following problem may be solved approximately
s* € argmin 1 Z Uy, s(x)),
ses 1Dl e
or in other words, in practice the computed s* is not a minimizer.

31/32

Risk minimization decomposition

Practical issues
» We only have access to a finite training dataset
» The set of function S is not the set of all measurable mapping

» The learning algorithm may not find the optimal classifier s € S,
i.e. the following problem may be solved approximately
1
s* € argmin DI Z Uy, s(x)),
seS ‘ | (x,y)€D
or in other words, in practice the computed s* is not a minimizer.
Risk decomposition
Excess risk: r(s*)—r*>0
Excess risk decomposition:
r(s*y—r*=r(s*)—infr(s) + infr(s)—r"

seS seS
—_— —————
Estimation error Approximation error

32/32

	Theory

