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Abstract

Named-entity recognition (NER) is a task
that typically requires large annotated datasets,
which limits its applicability across domains
with varying entity definitions. This paper
addresses few-shot NER, aiming to transfer
knowledge to new domains with minimal su-
pervision. Unlike previous approaches that rely
solely on limited annotated data, we propose
a weakly supervised algorithm that combines
small labeled datasets with large amounts of
unlabeled data. Our method extends the k-
means algorithm with label supervision, cluster
size constraints and domain-specific discrimi-
native subspace selection. This unified frame-
work achieves state-of-the-art results in few-
shot NER on several English datasets.

1 Introduction

Named-entity recognition (NER) is a fundamen-
tal information retrieval task that aims to iden-
tify entity mentions as well as their correspond-
ing types in texts (Grishman and Sundheim, 1996;
Chinchor and Robinson, 1998). This problem can
be tackled via standard structured prediction meth-
ods, e.g. conditional random fields for segmenta-
tion (Lafferty et al., 2001; McCallum and Li, 2003;
Sarawagi and Cohen, 2004). As supervised learn-
ing approaches come at the expense of building
large annotated datasets, there is a growing inter-
est in fine-tuning NER models using only a (very)
small annotated dataset, called the support.

Specifically, we focus on the few-shot domain
adaptation scenario: a model is first trained on
a large annotated dataset, and then fine-tuned on
target data using as support only 1-5 examples per
mention type. We consider two different flavors of
few-shot domain adaptation: (1) tag set extension,
i.e. output domain transfer, where the model is fine-
tuned to predict mention types that were previously
unknown, but on the same input domain; (2) input
domain transfer, where the model is fine-tuned to

predict mentions in previously unseen data sources,
potentially using a different annotation scheme. A
natural approach in this setting is to build class
prototypes from the support and rely on nearest
neighbor classification for prediction (Fritzler et al.,
2019; Yang and Katiyar, 2020; Das et al., 2022,
inter alia).

In this work, we propose a novel weakly-
supervised learning method for few-shot NER that
overcome limitations of previous work. Firstly, our
method is based on the k-means clustering algo-
rithm which naturally benefits from access to extra
unlabeled data that is often cheap and easy to col-
lect. Secondly, we introduce a ratio constraint on
the number of words that are not part of mentions
as extra learning information to make the most of
unlabeled data, in the same spirit as Effland and
Collins (2021). To this end, we develop novel al-
gorithms to take into account this ratio constraint
in the training procedure. Thirdly and lastly, we
jointly learn a projection of the data into a subspace
so that clusters are well separated, often referred to
as discriminative clustering (Ding and Li, 2007; Ye
et al., 2007b). All in all, our procedure is grounded
on a well-defined training problem and efficient
optimization algorithms.

A well-known issue of few-shot learning is the
instability of training, i.e. there can be a high vari-
ance between runs of the same training process
for the same support, mainly due to source of ran-
domness. To fix this issue, we devise a strictly
deterministic training procedure, meaning that two
runs will lead to the same results, as there not a sin-
gle call to a random number generator. We achieve
this by using batch updates (i.e. on the full training
objective) instead of a stochastic optimization algo-
rithm that operates on minibatches (Bottou, 2010).
Moreover, we propose a deterministic initialization
procedure for our k-means in order to bypass the
usual random initialization. Finally, note that our
training algorithm is based on a parameter-free opti-
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mization method, meaning that there is no learning
parameter to tune.

Our contributions can be summarized as follows:

• We formalize few-shot domain adaptation as
a k-means clustering problem, which can ben-
efit from extra unlabeled data;

• We propose novel algorithms for the E-step
of k-means that allows to introduce ratio con-
straints in both hard and soft variants;

• We extend the clustering process to jointly
project the data into a subspace where clusters
are well-separated;

• We evaluate our approach in different few-
shot settings and achieve novel state-of-the-art
results compared to previous work.

Our code is publicly available.1

Notation. We write scalars (resp. sets) in low-
ercase (resp. uppercase), and vectors (resp. matri-
ces) in bold lowercase (resp. uppercase). Given
a matrix M , we denote Mij the element at row
i and column j, and Mi the vector correspond-

ing to row i. We denote ∥a∥ =
√∑

i a
2
i the L2

norm, ⟨A,B⟩ =
∑

i,j AijBij the sum of entries
of the Hadamard product (i.e. dot product if argu-
ments are vectors) and tr(M) =

∑
iMii the trace.

Given i ∈ N++, we write [i] the set {1..i}. Given a
set S, we write P(S) the powerset of S and Pi(S)
the set of all subsets of S with cardinality i. We
denote △(k) = {a ∈ Rk

+|
∑

i ai = 1} the simplex
of dimension k − 1.

2 Few-Shot Named-Entity Recognition

The NER problem aims to identify entity mentions
in texts. This chunking task is often reduced to
a word tagging problem using the BIO scheme
(Ramshaw and Marcus, 1995): each word is tagged
either with O (not in a mention), B-TYPE (first
word of a mention) or I-TYPE (following words in
a mention), where TYPE is any allowed mention
type (e.g. LOC, ORG, etc.) Following previous
work in the few-shot scenario (Yang and Katiyar,
2020; Das et al., 2022), we rely on a simplified IO
scheme, where each word is either tagged with O
or I-TYPE, for example:
U.N. official Ekeus heads for Baghdad

I-ORG O I-PER O O I-LOC

We write T = {O, I-LOC, ...} the set of tags.
1https://github.com/ayoubhammal/ckss4ner

Weighting model. Let s = (s1, . . . , sn) be an
input sentence of n words, which is passed through
a neural network that computes d-dimensional hid-
den representations (x(1), . . . ,x(n)), e.g. BERT

(Devlin et al., 2019). Then, output tag weights
for word i can be computed via a linear model:

w(i) = Bx(i) + d (1)

where w(i) ∈ R|T | are output weights, B ∈ R|T |×d

and d ∈ R|T | are the model parameters. The pre-
diction is simply the tag of maximum weight. In
our setting, we instead use tag prototypes so that
we can rely on clustering for learning. As such,
the weight of a tag is proportional to the negative
squared Euclidean distance with the prototype:

w
(i)
j = −1

2
∥x(i) − c(j)∥2 (2)

where c(j) ∈ Rd is the prototype of tag j ∈ [ |T | ].2
In practice, it can be useful to have several proto-

types per tag, in particular for the O tag that gathers
heterogeneous classes of words. Let k be the total
number of prototypes and C ∈ Rk×d be the matrix
that contains in each row a prototype of dimension
d. Let ϕ : [k] → T be the function that assigns to
each prototype a tag and ϕ−1 its preimage function:

ϕ−1(t) = {i ∈ [k]|ϕ(i) = t} .

The weight of tag t ∈ T for word s(i) is defined as:

− min
j∈ϕ−1(t)

1

2
∥x(i) −Cj∥2 ,

or, in other words, the weight of a given tag t ∈ T
depends on the closest prototype according to ϕ−1.

Few-shot evaluation. We simulate a transfer
learning scenario as described by Yang and Kati-
yar (2020): we first pre-train a model on a source
domain for which there exists a large annotated
dataset, and then fine-tune the model on a target
domain using only a few labeled sentences, called
the support. The target domain may have different
mention labels than the source domain.3 However,
contrary to Yang and Katiyar (2020), we assume
access to a large unlabeled dataset in the target
domain, which is often easy and cheap to obtain.

For pre-training, we simply use the negative log-
likelihood loss defined as:

ℓ(w;y) = −⟨w,y⟩+ log
∑
i

expwi ,

2Models (1) and (2) are equivalent, see Appendix A.
3This means that the output layer used during pre-training,

i.e. either Equation (1) or (2), is not used for the target domain.
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where y is a one-hot vector indicating the gold tag.
Contrary to previous works (Fritzler et al., 2019;
Yang and Katiyar, 2020; Das et al., 2022), we com-
pute tag weights using Equation (2) instead of (1),
as it is more similar to the fine-tuning method.4

Fine-tuning data. We will denote the fine-
tuning dataset as the matrix X ∈ Rn×d, where n
is total number of words in the fine-tuning data
(labeled and unlabeled). Moreover, the matrix
Z ∈ {0, 1}n×k indicates which prototypes are al-
lowed for each word. In other words, Zij is equal
to 1 if and only if prototype j is allowed for data-
point i. That is, if i ∈ [n] is tagged with t ∈ T (i.e.
it is in the support), then:

Zij =

{
1 if j ∈ ϕ−1(t) ,

0 otherwise.

Otherwise, if word i′ ∈ [n] is not tagged (i.e. it is
not in the support), then Zi′j = 1,∀j ∈ [k].

3 Weakly-Supervised Clustering

In our few-shot settings, we have access to an ad-
ditional unlabeled dataset, that is, we learn from
low-recall data where only a few mentions are anno-
tated. In this setting, it is useful to introduce extra
knowledge during training as a supervision signal.
We follow Effland and Collins (2021) and impose
a ratio constraint on the O tag during training.

We first recall the k-means algorithm using our
notation. Then, we propose novel algorithms for
the E step that allows to enforce the ratio constraint.
Finally, we explain an initialization strategy that
leads to fully deterministic fine-tuning method.

3.1 The k-Means Algorithm

Clustering aims to find a partition of X into k
clusters that minimizes the intra-cluster dispersion:

min
π∈Pk( [n] )

∑
C∈π

∑
i∈C

∥Xi − C∥2 , (3)

where C = |C|−1
∑

i∈C Xi denotes the cluster
centroid. It can be shown that this is a NP-hard
combinatorial problem (Dasgupta, 2008; Aloise
et al., 2009). The main ideas behind the k-means
algorithm are: (1) allow clusters to contain no
datapoint; (2) transform the combinatorial search
π ∈ Pk( [n] ) into a continuous problem over a
cluster assignation matrix A ∈ Rn×k; (3) replace

4It led to better results in early experiments.

the dispersion around a cluster centroid by its vari-
ational formulation:∑

i∈C
∥Xi − C∥2 = min

c∈Rd

∑
i∈C

∥Xi − c∥2 . (4)

We obtain the following optimization problem:

min
A,C

∑
i∈[n]

∑
j∈[k]

Aij∥Xi −Cj∥2 +Ω(A) ,

s.t.
k∑

j=1

Aij = 1 ∀i ∈ [n] , (5)

A ∈ Rn×k
+ and C ∈ Rk×d , (6)

where Ω(·) is a regularizer that can be interpreted
in a similar way to the regularizer in the Fenchel-
Young losses framework (Blondel et al., 2020).
Equation (5) ensures that each datapoint is assigned
to exactly one cluster. In our setting, cluster cen-
troids in C corresponds to (learned) prototypes.
To take into account the supervision knowledge
encoded in Z, we add the following constraint:

Aij ≤ Zij ∀i ∈ [n] , j ∈ [k] , (7)

i.e. if a cluster is forbidden for a datapoint, the
corresponding value in A is forced to 0.

The objective of the k-means problem is non-
convex (An et al., 2006, Eq. 3.1), however it is
bi-convex, that is convex in A (resp. C) when C is
fixed (resp. A). Therefore, the standard optimiza-
tion method is based on Alternate Convex Search
(Hastie et al., 2015, Sec. 5.9): we iteratively mini-
mize the objective over A (E step) and over C (M
step).5 Importantly, this optimization procedure is
not specific to the original k-means and applies to
all problems with the same properties, e.g. when
adding constraint (7) and the ratio constraint (10).

Hard k-means. If Ω(A) = 0, we obtain the
standard hard k-means problem. (E step) Note that
if we minimize over A only, the cluster distance
term is constant. Let D be a matrix s.t. Dij =
∥Xi −Cj∥2, then the optimal assignation is:

Âi ∈ argmin
e∈△(k)

⟨e,Di⟩ s.t. ej ≤ Zij , ∀j ∈ [k] , (8)

where it is usual to choose one of optimal sim-
plex corners in case of ties. This problem can be

5E and M names comes from the EM algorithm, of which
k-means is a special case (Hastie et al., 2009, Sec. 14.3.7).
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solved in O(k) for single datapoint, hence the time-
complexity is O(nk). (M step) Minimizing over
cluster centroids C simply yields:

Ĉj =

∑
iAijXi∑
iAij

. (9)

Time-complexity is O(nk).
Soft k-means. If Ω(A) is the negative Shannon

entropy defined as follows:

Ω(A) = −H(A) = ⟨A, logA⟩ − ⟨A,1⟩ ,

the resulting algorithm is known as soft k-means.6

The optimal solution of the E step becomes:

Âij =
Zij expDij∑
j′ Zij′ expDij′

,

see (Beck, 2017, Ex. 3.71). It can be computed in
O(nk). The M step is left unchanged.

3.2 Weak Supervision via Ratio Constraint
Let rO be the expected ratio of words tagged with
O. To use this extra information, we can add the
following constraint to the clustering problem:∑

i∈[n]

∑
j∈ϕ−1(O)

Aij = n× rO . (10)

Note that this constraint only applies to the assign-
ment matrix A, therefore it only impacts the E step.
In the following, we propose novel algorithms to
compute the E step with constraint (10).

Hard k-means. The (unconstrained) E step can
be seen as a graph problem: (1) construct a bipar-
tite graph where one set of nodes corresponds to
datapoints and the other to clusters, and there is an
edge connecting a datapoint i with a cluster j with
weight Dij if and only if Zij = 1, see Figure 1
(left); (2) compute the one-to-many assignment of
minimum weight, where each node representing a
datapoint is assigned to exactly one cluster (i.e. it
has exactly one incident edge in the solution).

To compute the solution in the constrained case,
note that we can focus solely on whether a data-
point is assigned to one of the O clusters or not.
That is, we can divide cluster nodes into two groups:
nodes representing O clusters (i.e. elements of
ϕ−1(O)) and nodes representing other clusters. We
can therefore contract each group into a single
node, where we keep only the edge of minimum

6Not to be confused with fuzzy clustering that optimizes a
different objective (Dunn, 1973; Bezdek, 1981).

weight between a datapoint and nodes in the con-
tracted group, and compute the solution of the con-
strained E step on this simpler graph, see Figure 1
(right). It is trivial to construct the solution for the
original graph from a contracted graph solution.

To this end, we build vectors d(O) ∈ Rn (resp.
d(OTHERS) ∈ Rn) that indicates the distance be-
tween each datapoint and its closest O cluster (resp.
non-O cluster), that is:

d
(O)
i = min

j∈ϕ−1(O)
Dij s.t. Zij = 1

and d
(OTHERS)
i = min

j /∈ϕ−1(O)
Dij s.t. Zij = 1 ,

where the minimum is set to −∞ if the search
space is empty.

Let a ∈ {0, 1}n be an assignation vector to the
O group of clusters, i.e. ai = 1 if and only if x(i) is
assigned to a O cluster. Then, there is a one-to-one
mapping between solutions Â of the constrained E
step and solutions â of the following problem:

min
a

⟨a,d(O)⟩+ ⟨1− a,d(OTHERS)⟩

s.t.
∑
i∈[n]

ai = n× rO and a ∈ {0, 1}n .

The objective can be rewritten as follows:

⟨a,d(O)⟩+ ⟨1− a,d(OTHERS)⟩
= ⟨a,d(O) − d(OTHERS)︸ ︷︷ ︸

=d′

⟩+ ⟨1,d(OTHERS)⟩︸ ︷︷ ︸
constant

,

where the second term is constant. Computing the
optimal â is therefore reduced to find the n × rO
smallest values in the penalized distance vector d′.
It is then trivial to build Â from â by inspecting
which edges was kept in the contraction step. Time-
complexity is O(nk + n log n) since it requires a
partial sort of d′.

Soft k-means. Constraints (5), (7) and (10) can
be rewritten as inclusion in the intersection of the
following affine subspaces:

S(1) =
{
A ∈ Rn×k

+

∣∣∣ ∀i, j : Zij = 0 ⇔ Aij = 0
}

S(2) =
{
A ∈ Rn×k

+

∣∣∣A1 = 1
}

S(3) =

A ∈ Rn×k
+

∣∣∣∣∣∣
∑
i∈[n]

∑
j∈ϕ−1(O)

Aij = n× rO


i.e. A ∈ S(1) ∩ S(2) ∩ S(3). We can rewrite the E
step as a KL projection into this intersection:

argmin
A

⟨A,D⟩ −H(A) s.t. (7), (5) and (10)
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Figure 1: Illustration of the E step with ratio constraints. In
the two bipartite graphs, left (resp. right) nodes represents dat-
apoints (resp. clusters). The left graph is the full graph, where
edge weights indicate distances between nodes and clusters. By
contracting the two sets of clusters, we obtain a new graph, on
which we can run the E step with a ratio constraint for the con-
tracted O cluster (ratio is set to 1/3 in the example). Thick red
edges indicate the optimal solution. Note that, without the ratio
constraint, x(2) would be assigned to the O cluster.

projection

Figure 2: Illustration of the benefit of subspace
selection. (top) Data in its original 2D space.
We assume the constrained clustering results
in two clusters: one containing the two black
crosses and the other containing the two red
circles. Let the green star be a test point. In-
tuitively, it should be classified in the black
crosses cluster, however, it is closer to the other
cluster centroid! (bottom) Data after projection
in a 1D space. The test point is now correctly
classified.

=argmin
A

KL[A| exp(−D)] s.t. A ∈
3⋂

i=1

S(i)

This problem can be (approximatively) solved us-
ing the iterative Bregman projection algorithm
(Bregman, 1967; Censor and Zenios, 1997), which
have recently been popular in the optimal transport
literature (Benamou et al., 2015). We iteratively
project the current estimate into S(1) ∩ S(2) and
S(1) ∩ S(3). More details are given in Appendix B.

3.3 Initialization
It is well known that k-means solution heavily de-
pends on initialization (Bradley and Fayyad, 1998),
and several runs with different random initializa-
tions may produce quite different results. There-
fore, we opt for a deterministic approach for cluster
center initialization. An important advantage of our
approach is that it improves reproducibility.

We assume that for each tag t ∈ T , there ex-
ists at least |ϕ−1(t)| words annotated with t in the
dataset. If |ϕ−1(t)| = 1, we initialize the cluster
centroid as the average of hidden representation
of words labeled with t. Otherwise, we rely on
greedy agglomerative hierarchical clustering using
the Ward linkage strategy (Duda et al., 2000, Sec.
10.9). We cut the dendrogram to obtain |ϕ−1(t)|
clusters whose centroids will serve as initial cen-
troids for the k-means procedure.

4 Subspace Selection

Although constrained clustering is convenient for
weakly-supervised few-shot learning, it can lead
to problems inherent to the clustering assumption:
the property that each datapoint is assigned to its
closest neighbor may not be satisfied in the training
data due to ratio or supervision constraints. At test
time, this may result in incorrect predictions. To
bypass this issue, we jointly learn a transformation
of the data so that clusters are well separated, see
Figure 2. We focus on subspace selection, i.e. the
transformation is restricted to a linear projection.

4.1 Problem Definition
Let U⊤ ∈ Rp×d, be a projection matrix of rank
p ≤ d. Then, x′ = U⊤x ∈ Rp is a projection of
x ∈ Rd into the p-dimensional subspace defined
by the linear map.7 The new joint constrained
clustering an subspace selection problem is:

min
A,C,U

∑
i∈[n]

∑
j∈[k]

Aij∥U⊤Xi −U⊤Cj∥2 +Ω(A)

s.t. (5), (6) and (7).

One issue with this problem formulation is that it
has a trivial but non interesting global optimum for

7Note that this is equivalent to defining a custom metric
∥U⊤x−U⊤c∥2 = (x−c)⊤UU⊤(x−c) = ∥x−c∥2UU⊤ ,
called the Mahalanobis distance parameterized by UU⊤.
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the first term by setting U = 0, i.e. collapsing all
points, as there is no constraint on U .

Given a cluster assignment matrix A, we assume
Ĉ are the optimal centroids given by Equation (9).
To simplify notation, the dependency on A of Ĉ is
not explicitly written. The total, within-class and
between-class scatter (correlation) matrices are:

S(t)
U =

∑
i∈[n]

(U⊤Xi −U⊤x)(U⊤Xi −U⊤x)⊤

S(w)
U ,A =

∑
j∈[k]

∑
i∈n[n]

Aij (U⊤Xi −U⊤Ĉj)

×(U⊤Xi −U⊤Ĉj)
⊤

S(b)
U ,A =

∑
j∈[k]

∑
i∈n[n]

Aij (U⊤Ĉj −U⊤x)

×(U⊤Ĉj −U⊤x)⊤

where x = n−1
∑

i∈[n]Xi is the sample mean.

tr(S(t)
U ), tr(S(w)

U ,A) and tr(S(b)
U ,A) correspond to

data, intra-cluster and inter-cluster dispersion.
The following equalities holds (Appendix C.1):

S(t)
U = S(w)

U ,A + S(b)
U ,A (11)

tr(S(t)
U ) = tr(S(w)

U ,A) + tr(S(b)
U ,A) (12)

If U is fixed to the identity matrix I (i.e. no learned
subspace selection), the left-hand side is constant
as it does not depend on the clustering: minimizing
the intra-cluster dispersion is equivalent to maxi-
mizing the inter-cluster dispersion, so there is no
cluster collapse. When jointly learning U , we pro-
pose to fix the expected data dispersion as follows:8

S(t)
U = I ⇔ U⊤S(t)

I U = I. (13)

which prevent data and clusters collapse.

4.2 Optimization Algorithm
We follow an alternative convex search procedure
where variables are visited in order A → C → U .
Minimizing over A requires to take into account for
the projection when computing matrix D in Equa-
tion (8), i.e. we set Dij = ∥U⊤Xi−U⊤Cj∥2. Op-
timization over C is left unchanged (Appendix D).

We are left with optimization over U . Similarly
to Equation (13), we can rewrite the objective as:

tr(U⊤SI,AU) + Ω(A) .

Ignoring the constant term, the Lagrangian is:

L(U ,Λ) =tr(U⊤S
(w)
I,AU)

− tr(Λ⊤(U⊤S
(t)
I U − I)),

8See Appendix C.2 for proof of the equivalence.

where Λ ∈ Rp×p are dual variables associated with
Constraint (13), a.k.a. Lagrangian multipliers. Λ is
implicitly constrained to be diagonal at optimality
(Ghojogh et al., 2023, App. B). By stationarity (i.e.
differentiating L w.r.t. U ), a primal-dual pair of
variable Û and Λ̂ are minimizer if and only if:

S
(w)
I,AÛ = S

(t)
I ÛΛ̂, (14)

which is a generalized eigenvalue problem on pair
of matrices (S(w)

I,A,S
(t)
I ): columns of Û are eigen-

vectors, and values in the diagonal of Λ̂ are eigen-
values (Parlett, 1998; Golub and Van Loan, 2013).

As we have a minimization problem, the optimal
solution is composed of the p smallest eigenvalues.
They can be computed in O((n+ k)d2 + d3).

Projection dimension. We are left with one
question: how to choose the projection dimension
p? Note that given enough training data (n ≫
d), which is the case in practice, the total scatter
S

(t)
I will be of full rank, that is invertible. We can

rewrite Equation (14) as follows (see Appendix E):

(S
(t)
I )−1S

(b)
I,A︸ ︷︷ ︸

=S

Û = Û (I − Λ̂)︸ ︷︷ ︸
=Λ̂′

(15)

which is equivalent to computing eigenvalues Λ̂′

of matrix S. We set p to the maximum number of
non-null eigenvalues we can get, that is:

p = rank(S) = rank
(
(S

(t)
I )−1S

(b)
I,A

)
= min

(
rank

(
(S

(t)
I )−1

)
, rank

(
S

(b)
I,A

))
= min(d, k − 1) = k − 1 .

As the rank of scatter matrix S
(b)
I,A is equal to k− 1

in non degenerated cases.9

5 Related Work

Few-shot learning. A common approach for few-
shot learning is to learn a neural network based
metric distance (Vinyals et al., 2016; Snell et al.,
2017; Sung et al., 2018, inter alia). Although our
approach can also be interpreted as metric learning,
we simplify the process by restricting ourselves to
using the euclidean distance after projection in a
subspace, where the subspace projection is learned.

In the case of NER, Fritzler et al. (2019) adapted
the prototypical network of Snell et al. (2017).
Yang and Katiyar (2020) rely on nearest-neighbor

9It is a sum of k rank-1 matrices that are tied by the mean.
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Model 1-shot 5-shot

A B C Avg. A B C Avg.
Proto † 19.3±3.9 22.7±8.9 18.9±7.9 20.3 30.5±3.5 38.7±5.6 41.1±3.3 36.7
NNShot † 28.5±9.2 27.3±12.3 21.4±9.7 25.7 44.0±2.1 51.6±5.9 47.6±2.8 47.7
StructShot † 30.5±12.3 28.8±11.2 20.8±9.9 26.7 47.5±4.0 53.0±7.9 48.7±2.7 49.8
CONTaiNER † 32.2±5.3 30.9±11.6 32.9±12.7 32.0 51.2±5.9 55.9±6.2 61.5±2.7 56.2
+ Viterbi † 32.4±5.1 30.9±11.6 33.0±12.8 32.1 51.2±6.0 56.0±6.2 61.5±2.7 56.2

Our reproduction on our support sets

NNShot 23.9±10.0 28.2±8.1 23.0±8.5 25.0 37.9±6.1 50.6±6.6 38.8±3.5 42.4
StructShot 24.6±10.2 28.2±8.0 23.4±8.6 25.4 40.2±6.0 50.9±6.8 41.5±4.1 44.2

K-Means with subspace selection using unlabeled dev + train sets

Hard clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 39.5±11.6 60.3±7.8 46.6±10.5 48.8 36.4±10.3 70.1±4.4 57.6±6.2 54.7
rO = 0.95, 0.96, 0.93 43.5±12.8 60.6±6.4 45.1±11.3 49.7 54.5±13.8 69.2±7.8 60.1±6.3 61.3

Soft clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 39.4±11.6 60.3±7.8 46.5±10.6 48.7 35.9±10.5 70.0±4.4 57.6±6.2 54.5
rO = 0.95, 0.96, 0.93 40.1±11.7 57.7±13.5 47.1±11.5 48.3 47.1±10.7 72.3±5.4 63.5±5.9 61.0

Table 1: Results for the tag set extension experiments reported in F1-score. Results marked with † are taken from Das et al. (2022),
and are evaluated on different support sets than ours. For our evaluation, we generated 10 support sets following the sampling
algorithm proposed by Yang and Katiyar (2020). Ratio constraints are noted in order of datasets, i.e. rO = 0.95, 0.96, 0.93
means that models evaluated on tag set A, tag set B, tag set C use a 0.95, 0.96, 0.93 ratio respectively.

classification along with a meta-transition matrix
learned from the source task but with simpler IO
transitions. Unfortunately, the later requires to tune
a temperature hyper-parameter on the target do-
main, which is not realistically possible in the few-
shot setting where there is no development set. Das
et al. (2022) extended this approach by fine-tuning
on both of the source dataset and target support us-
ing a contrastive loss function. Closer to our work,
Hou et al. (2020) rely on a target task specific linear
projection as proposed by Yoon et al. (2019), but
they cannot benefit from extra unlabeled data.

Ratio constraints. Using supervision signal in
the E step has been known as posterior regular-
ization in the case of generative models (Ganchev
et al., 2010). However, generic application of this
framework rely on costly gradient descent to com-
pute the solution of the E step, whereas we propose
an polynomial analytical solution for our case. Pre-
vious work on ratio constraint for k-means reduced
the E step to transportation problems (Ng, 2000;
Bradley et al., 2000) but rely on generic algorithms,
whereas we propose an efficient algorithm that ben-
efit from the structure of our ratio constraint.

Subspace selection. Joint k-means and sub-
space selection is known as discriminative k-means
(Ding and Li, 2007; Ye et al., 2007a; De la Torre
and Kanade, 2006; Ye et al., 2007b). We de-
part from previous work (e.g. Ding and Li, 2007)
by proposing an grounded and well-defined ap-

proaches instead of the mere combination of inde-
pendent steps.

6 Experiments

We follow previous work (Yang and Katiyar, 2020;
Das et al., 2022) and use OntoNotes5 (Weischedel
et al., 2013) as generic data (news, conversational
telephone speech, weblogs, usenet newsgroups,
broadcast, talk shows) together with CoNLL2003
(Sang and De Meulder, 2003) and WNUT17 (Der-
czynski et al., 2017) as specialized data (news and
social media, respectively).10

We initialise the model with base-bert-cased
(Devlin et al., 2019). We pre-train on the source
domain for 3 epochs using a 5 × 10−5 learning
rate with a linear decay. For consistency, the pre-
training is performed with the IO tagging scheme.
If a word is splitted into subtokens, we average the
hidden representation of first and last subtokens.

When evaluating in the few-shot settings, we
use the train set and development set belonging to
each support as unlabeled data. For k-means, we
use 10 iterations of the alternative convex search
procedure. We have one cluster per entity type (I
clusters), and we fix the number of clusters for the

10Previous works also evaluate additionally on I2B2 2014
(Stubbs and Özlem Uzuner, 2015) for the medical domain.
Despite sharing the support sets they used on this dataset,
they do not share the preprocessing steps they employed for
sentence segmentation and tokenization, which hinder our
comparative evaluation.
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Model 1-shot 5-shot

CoNLL WNUT17 Avg. CoNLL WNUT17 Avg.
Proto † 49.9±8.6 17.4±4.9 33.7 61.3±9.1 22.8±4.5 42.1
NNShot † 61.2±10.4 22.7±7.4 41.9 74.1±2.3 27.3±5.4 50.7
StructShot † 62.4±10.5 24.2±8.0 43.3 74.8±2.4 30.4±6.5 52.6
CONTaiNER † 57.8±10.7 24.2±2.9 41.0 72.8±2.0 27.7±2.2 50.3

+ Viterbi † 61.2±10.7 27.5±1.9 44.4 75.8±2.7 32.5±3.8 54.2

Hard clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 65.4±12.0 20.9±8.2 43.2 75.7±2.1 26.5±5.3 51.1
rO = 0.80, 0.90 62.6±10.6 23.6±7.1 43.1 71.9±3.0 29.3±3.1 50.6
rO = 0.85, 0.95 66.4±13.1 28.9±9.4 47.7 75.8±2.6 39.0±3.6 57.4

Soft clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 65.4±12.0 20.8±8.1 43.1 75.7±2.1 26.5±5.3 51.1
rO = 0.80, 0.90 65.6±12.5 26.6±8.7 46.1 75.5±2.5 35.7±3.5 55.6
rO = 0.85, 0.95 65.6±12.5 26.8±8.8 46.2 75.4±2.5 35.8±3.5 55.6

Table 2: Results for the domain adaptation experiments reported in F1-score. Results marked with † are taken from Das et al.
(2022) and evaluation of our proposed method is done on the same 10 supports. Ratio constraints are noted in the order of
datasets, i.e. rO = 0.80, 0.90 means that the first dataset, CoNLL, is tested with a ratio of 0.80 and the second dataset, WNUT17,
is tested with a ratio of 0.90.

O tag to 10. As we cannot assume to know the true
ratio of O tags, we evaluate our approach with both
under- and over-estimations.

Prediction. Given word s with hidden represen-
tation x, we simply predict the tag associated with
the closest cluster:11

ŷ(x) ∈ ϕ

(
argmin

j∈[k]
∥U⊤x−U⊤Cj∥2

)
.

6.1 Few-Shot Settings
Tag set extension. This setting evaluates the per-
formance of the model on a set of new tags, but
without changing the input data domain. For a
group T ′ ⊂ T \ {O} of tags, we (1) pre-train the
model using only mentions of type T \ T ′ in the
training data and (2) evaluate in a few-shot setting
on mention of types T ′. We follow Yang and Kati-
yar (2020) and use Ontonotes5 three different sets
T ′, reported in Appendix F. We sample 10 sup-
port sets for each T ′ using the algorithm provided
by Yang and Katiyar (2020). We compare to the
results of previous works evaluated on their own
support sets since those are not publicly available.

Domain transfer. This setting evaluates the per-
formance of the model on a new set of tags seman-
tically different than those seen during pre-training,
and on a different input data source. To this end,
we use Ontonotes5 as a for pre-training, and eval-
uate few-shot performances on CoNLL2003 and

11Yang and Katiyar (2020) rely on Viterbi decoding with a
transition matrix learned on pre-training data. However, it has
a temperature parameter which can only be tuned on the test
data. Therefore we did not adopt this decoding strategy.

WNUT17. We use the same support sets as Das
et al. (2022).

6.2 Results

Tables 1 and 2 summarize the results for the tag
set extension and the domain transfer experiments,
respectively. The constrained k-means with sub-
space selection algorithm performs considerably
better than other baseline approaches across all ex-
perimental settings, with the biggest improvements
observed on the tag set extension setting.

Hard and soft assignments result in very similar
performances on the unconstrained version of the
algorithm. It is interesting then to notice that hard
assignments version benefits more from the ratio
information than the soft assignment one. In the
contrary, the soft assignment version of the algo-
rithm is less sensitive to the ratio constraint and
seem to keep a stable performance even with sub-
optimal ratio. We hypothesis that this is due to the
fact that without ratio constraints, the hard k-means
may stick to incorrect early decisions, whereas soft-
assignations allows to escape them.

Ablation results are given in Appendix G.

7 Conclusion

We propose a novel weakly-supervised algorithm
for the few-shot NER. We evaluate our approach
on different scenarios and achieve state-of-the-art
results. Future work could consider applying our
approach to learning from partial labels (Jin and
Ghahramani, 2002) and to transductive learning.
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Limitations

In practice, it is important to be able to differentiate
between succeeding mentions of the same type
using B tags. Unfortunately, including B tags is
non-trivial in our approach, and solutions should be
considered in future research. The same limitation
happens for inner mentions in the case of nested
NER. Although this is an important limitation of
our approach, it is also a limitation of previous
work for few-shot NER.

We were unable to compare our approach on the
I2B2 dataset as authors did not release unlabeled
data using their pre-processing method, nor their
pre-processing scripts.
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A Distance and Projection Weights
Equivalence

The negative squared Euclidean distance with the
prototype can be re-written as:

wj = −1

2
∥x−Cj∥2

= −1

2
(∥x∥2 + ∥Cj∥2 − 2 ⟨x,Cj⟩)

= ⟨x,Cj⟩ −
1

2
∥Cj∥2 −

1

2
∥x∥2

where we can define:

d′ =

 −1
2∥C1∥2

...
−1

2∥C|T |∥2]

 ,

and:

c = −1

2
∥x∥2 ∈ R ,

therefore:

w = Cx+ d′ + c .

and by the constant invariance of the Softmax oper-
ation (Blondel et al., 2020, Proposition 1), we can
show that:

softmax(Cx+ d′ + c) = softmax(Cx+ d′)

where Cx+ d′ is a linear model.

B Soft k-Means and Ratio Constraints

In this section, we explain how to compute the E
step of soft k-means with the ratio constraint. The
method is based on iterative Bregman projections.
We report the reader to (Benamou et al., 2015) and
(Censor and Zenios, 1997) for an in-depth explana-
tion of this method.

Definition 1 (Bregram divergence). Let f :
Rn → R ∪ {∞} be a strictly convex and con-
tinuously differentiable function. The f -Bregman
divergence Df : domf × int(domf) → R is de-
fined as:

Df (p, q) = f(p)− f(q)− ⟨∇f(q),p− q⟩.

Definition 2 (Bregman projection). Let S be a set
and f a strictly convex and continuously differen-
tiable function. The Bregman projection Projf,S is
defined as:

Projf,S(q) ∈ argmin
p∈S

Df (p, q).

Definition 3 (Iterative Bregman projections). Let
Df be a Bregman divergence and S = ∩k

i=1S
(i)

be a set defined as the intersection of k affine sets
S(i). We consider problems of the following form:

Projf,S(q) = argmin
p∈S

Df (p, q),

where q ∈ domf is a given input. The iterative
Bregman projection algorithm computes a solution
of this problem as follows:

• p(0) = q,

• ∀t > 0 : p(t) = Projf,S(t)(p(t−1)), were we
extend the indexing of the sets by k-periodicity,
i.e. S(t+k) = S(t).

We have p(t) → Projf,S(q) as t → ∞.

Now, the constrained soft k-means problem over
A is defined as:

argmin
A

KL[A| exp(−D)] s.t. A ∈
3⋂

i=1

S(i)

This previous problem over A can be rewritten as
a Bregman projection such that:

argmin
A∈S

KL[A| exp(−D)] = Proj−H,S(exp(−D))

such that S =
⋂3

i=1 S
(i). Although the full prob-

lem does not have an analytic solution, it can be
solved approximately given enough iterations us-
ing iterative Bregman projections. We define two
affine sets: S(1) ∩ S(2) and S(1) ∩ S(3).

The solutions of the projection over each of those
sets are:

Â ∈ Proj−H,S(1)∩S(2)(A)
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⇐⇒ Âij =
Zij exp logAij∑

j′∈[k] Zij′ exp logAij′
,

∀i ∈ [n], j ∈ [k],

and

Â ∈ Proj−H,S(1)∩S(3)(A)

⇐⇒ Âij ={ Zijn×rO exp logAij∑
i′∈[n],j′∈σ−1(O) Zi′j′ exp logAi′j′

if j ∈ σ−1(O),

Zij exp logAij otherwise,

∀i ∈ [n], j ∈ [k].

From this, we can derive an iterative algorithm to
solve the constrained soft k-means problem over
A using iterative Bregman projections.

C Scatter Matrices

Given a cluster assignment matrix A, we assume
Ĉ are the optimal centroids given by Equation (9).
To simplify notation, the dependency on A of Ĉ
is not explicitly written. The total, within-class
and between-class scatter matrices are defined as
follows:

S(t)
I,A =

∑
i∈[n]

(Xi − x)(Xi − x)⊤

S(w)
I,A =

∑
j∈[k]

∑
i∈n[n]

Aij(Xi − Ĉj)(Xi − Ĉj)
⊤

S(b)
I,A =

∑
j∈[k]

∑
i∈n[n]

Aij(Ĉj − x)(Ĉj − x)⊤

where x = n−1
∑

i∈[n]Xi is the sample mean.
The I in the denominator indicates we consider
data in the original space. Note that tr(S(t)

I,A),

tr(S(w)
I,A) and tr(S(b)

I,A) corresponds to data, intra-
cluster and inter-cluster dispersion.

C.1 Equality

In this section, we prove the following equality:

S(t)
I,A = S(w)

I,A + S(b)
I,A .

Although this equality in well-known in the hard
cluster assignment case (e.g., Hastie et al., 2009,
Sec. 14.3.5), our proof also applies to soft assign-
ments. An important implication of this equality is
that we have:

tr(S(t)
I,A) = tr(S(w)

I,A) + tr(S(b)
I,A) ,

meaning that minimizing the intra-cluster disper-
sion (i.e. the k-means objective) is equivalent to
maximizing the inter-cluster dispersion (i.e. find-
ing well-separated clusters) as the data dispersion
is constant.

First, note that as each row of a valid assignment
matrix must sum to 1, we can write:

S(t)
I,A =

∑
i∈[n]

(Xi − x)(Xi − x)⊤

=
∑
i∈[n]

∑
j∈[k]

Aij


︸ ︷︷ ︸

=1

(Xi − x)(Xi − x)⊤

=
∑
j∈[k]

∑
i∈[n]

Aij(Xi − x)(Xi − x)⊤ .

We now substract and add Ĉj inside the two terms
of the matrix multiplication, and then expand the
multiplication:

=
∑
j∈[k]

∑
i∈[n]

Aij (Xi − Ĉj + Ĉj − x)

×(Xi − Ĉj + Ĉj − x)⊤

=
∑
j∈[k]

∑
i∈[n]

Aij(Xi − Ĉj)(Xi − Ĉj)
⊤

︸ ︷︷ ︸
=S(w)

+
∑
j∈[k]

∑
i∈[n]

Aij(Ĉj − x)(Ĉj − x)⊤

︸ ︷︷ ︸
=S(b)

+
∑
j∈[k]

∑
i∈[n]

Aij(Xi − Ĉj)(Ĉj − x)⊤

+
∑
j∈[k]

∑
i∈[n]

Aij(Ĉj − x)(Xi − Ĉj)
⊤

We are left with showing that the two last terms are
null.

We show that the fourth term is null, the third
one follows a similar derivation. We can move out
the term that doesn’t depends on i from the sum,
and then expand the factorization by Aij :∑

j∈[k]

∑
i∈[n]

Aij(Ĉj − x)(Xi − Ĉj)
⊤

=
∑
j∈[k]

(Ĉj − x)
∑
i∈[n]

Aij(Xi − Ĉj)
⊤

=
∑
j∈[k]

(Ĉj − x)

∑
i∈[n]

AijXi −
∑
i∈[n]

AijĈj

⊤
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=
∑
j∈[k]

(Ĉj − x)

∑
i∈[n]

AijXi − Ĉj

∑
i∈[n]

Aij

⊤

.

If we replace the leftmost occurrence of Ĉj using
Equation 9, we can then see that the second term of
the matrix multiplication is equal to the null vector:

=
∑
j∈[k]

(Ĉj − x)

×

⊤
∑
i∈[n]

AijXi −
∑

i′∈nAi′jXi∑
i′∈nAi′j︸ ︷︷ ︸
=Ĉj

∑
i∈[n]

Aij


︸ ︷︷ ︸

=0

,

which ends the proof.

C.2 Scatter Matrices and Subspace Projection
We now turns to the case were the data is projected
into a subspace using matrix U⊤. The total scatter
matrix in this case can be written as follows:

S(t)
U =

∑
i∈[n]

(U⊤Xi −U⊤x)(U⊤Xi −U⊤x)⊤

=
∑
i∈[n]

U⊤(U⊤Xi −U⊤x)(Xi − x)⊤U

= U⊤

∑
i∈[n]

(U⊤Xi −U⊤x)(Xi − x)⊤

U

= U⊤S(t)
I,AU .

Similarly, we have:

S(w)
U = U⊤S(w)

I,AU

and S(b)
U = U⊤S(b)

I,AU ,

and therefore the following relation trivially holds
in the projected case too:

S(t)
U ,A = S(w)

U ,A + S(b)
U ,A .

D M Step with Joint Subpsace Selection

The solution of the M step is left unchanged when
the distance depends on a projection matrix U . By
first order optimality conditions, Ĉj is a minimizer
if and only if:

∇
Ĉj

∑
i∈[n],
j∈[k]

Aij∥U⊤Xi −U⊤Ĉj∥2] = 0

2
∑
i∈[n]

AijU(U⊤Xi −U⊤Ĉj) = 0

2UU⊤
∑
i∈[n]

Aij(Xi − Ĉj) = 0

∑
i∈[n]

Aij(Xi − Ĉj) = 0

Ĉj =

∑
i∈[n]AijXi∑
i∈[n]Aij

.

E Subspace Dimension

We derive Equation (15) as follows. Remember
that stationarity condition, Equation (14), is:

S
(w)
I,AÛ = S

(t)
I ÛΛ̂

By assumption, S(t)
I is of full rank, therefore in-

vertible. We multiplty both sides by its inverse, and
rewrite S

(w)
I,A using Equality (11):

(S
(t)
I )(−1)(S

(t)
I − S

(b)
I,A)Û = ÛΛ̂

By expanding and re-arranging terms, we obtain:

Û − (S
(t)
I )(−1)S

(b)
I,AÛ = ÛΛ̂

(S
(t)
I )(−1)S

(b)
I,AÛ = Û − ÛΛ̂

(S
(t)
I )(−1)S

(b)
I,A︸ ︷︷ ︸

=S

Û = Û (I − Λ̂)︸ ︷︷ ︸
=Λ̂′

which is equivalent to computing eigenvalues Λ̂′

of matrix S.

F Tag Set Extension Splits

The list of type T ′ used for few-shot adaptation are:

Group A {ORG, NORP, ORDINAL, WORK OF ART,
QUANTITY, LAW}

Group B {GPE, CARDINAL, PERCENT, TIME,
EVENT, LANGUAGE}

Group C {PERSON, DATE, MONEY, LOC, FAC,
PRODUCT}

G Ablation Results

Results using different unlabeled datasets are given
in Table 3. We use either the full train and dev
data as unlabeled data, or only the dev data, or no
unlabeled data at all (i.e. the E step becomes trivial,
and the algorithm reduces to subspace selection).

Results without subspace selection are given in
Table 4. We observe that subspace selection im-
proves results.
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Model 1-shot 5-shot

CoNLL WNUT17 Avg. CoNLL WNUT17 Avg.
Proto † 49.9±8.6 17.4±4.9 33.7 61.3±9.1 22.8±4.5 42.1
NNShot † 61.2±10.4 22.7±7.4 41.9 74.1±2.3 27.3±5.4 50.7
StructShot † 62.4±10.5 24.2±8.0 43.3 74.8±2.4 30.4±6.5 52.6
CONTaiNER † 57.8±10.7 24.2±2.9 41.0 72.8±2.0 27.7±2.2 50.3

+ Viterbi † 61.2±10.7 27.5±1.9 44.4 75.8±2.7 32.5±3.8 54.2

K-Means with subspace selection using unlabeled dev + train sets

Hard clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 65.4±12.0 20.9±8.2 43.2 75.7±2.1 26.5±5.3 51.1
rO = 0.80, 0.90 62.6±10.6 23.6±7.1 43.1 71.9±3.0 29.3±3.1 50.6
rO = 0.85, 0.95 66.4±13.1 28.9±9.4 47.7 75.8±2.6 39.0±3.6 57.4

Soft clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 65.4±12.0 20.8±8.1 43.1 75.7±2.1 26.5±5.3 51.1
rO = 0.80, 0.90 65.6±12.5 26.6±8.7 46.1 75.5±2.5 35.7±3.5 55.6
rO = 0.85, 0.95 65.6±12.5 26.8±8.8 46.2 75.4±2.5 35.8±3.5 55.6

Using unlabeled dev set only

Hard clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 65.6±11.1 22.3±9.6 43.9 75.1±2.5 28.6±5.3 51.8
rO = 0.80, 0.90 63.1±10.4 20.9±6.3 42.0 71.2±3.0 26.6±2.5 48.9
rO = 0.85, 0.95 65.9±12.7 28.1±8.5 47.0 75.7±2.3 38.4±3.5 57.1

Soft clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 65.5±11.1 22.2±9.5 43.9 75.1±2.5 28.5±5.2 51.8
rO = 0.80, 0.90 66.3±11.4 25.4±8.4 45.8 75.1±2.3 35.8±4.0 55.4
rO = 0.85, 0.95 66.3±11.5 25.5±8.7 45.9 75.1±2.3 36.0±4.1 55.6

Using the support sets only (# O-clusters = 10, # I-clusters = 1)

One iteration 63.8±8.7 21.0±10.4 42.4 73.5±3.7 32.3±4.3 52.9

Table 3: Results for the domain adaptation experiments reported in F1-score. Results marked with † are taken from Das et al.
(2022) and evaluation of our proposed method is done on the same 10 supports. Ratio constraints are noted in the order of
datasets, i.e. rO = 0.80, 0.90 means that the first dataset, CoNLL, is tested with a ratio of 0.80 and the second dataset, WNUT17,
is tested with a ratio of 0.90.

Model 1-shot 5-shot

CoNLL WNUT17 Avg. CoNLL WNUT17 Avg.
Proto † 49.9±8.6 17.4±4.9 33.7 61.3±9.1 22.8±4.5 42.1
NNShot † 61.2±10.4 22.7±7.4 41.9 74.1±2.3 27.3±5.4 50.7
StructShot † 62.4±10.5 24.2±8.0 43.3 74.8±2.4 30.4±6.5 52.6
CONTaiNER † 57.8±10.7 24.2±2.9 41.0 72.8±2.0 27.7±2.2 50.3

+ Viterbi † 61.2±10.7 27.5±1.9 44.4 75.8±2.7 32.5±3.8 54.2

K-Means with subspace selection

Hard clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 65.4±12.0 20.9±8.2 43.2 75.7±2.1 26.5±5.3 51.1
rO = 0.80, 0.90 62.6±10.6 23.6±7.1 43.1 71.9±3.0 29.3±3.1 50.6
rO = 0.85, 0.95 66.4±13.1 28.9±9.4 47.7 75.8±2.6 39.0±3.6 57.4

K-Means without subspace selection

Hard clustering (# O-clusters = 10, # I-clusters = 1)

rO = NA 64.0±14.5 21.7±7.4 42.9 72.9±2.9 22.1±4.9 47.5
rO = 0.80, 0.90 60.6±14.4 25.9±6.4 43.3 70.5±4.8 29.3±5.0 49.9
rO = 0.85, 0.95 65.2±14.7 28.2±9.1 46.7 72.5±3.2 38.3±2.3 55.4

Table 4: Ablation results. Constrained and unconstrained k-means, with and without the subspace selection step i.e. U = Id.
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