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Abstract

We propose a novel graph-based approach
for semantic parsing that resolves two prob-
lems observed in the literature: (1) seq2seq
models fail on compositional generalization
tasks; (2) previous work using phrase struc-
ture parsers cannot cover all the semantic
parses observed in treebanks. We prove that
both MAP inference and latent tag anchor-
ing (required for weakly-supervised learn-
ing) are NP-hard problems. We propose two
optimization algorithms based on constraint
smoothing and conditional gradient to ap-
proximately solve these inference problems.
Experimentally, our approach delivers state-
of-the-art results on GEOQUERY, SCAN and
CLEVR, both for i.i.d. splits and for splits
that test for compositional generalization.

1 Introduction

Semantic parsing aims to transform a natural lan-
guage utterance into a structured representation that
can be easily manipulated by a software (for exam-
ple to query a database). As such, it is a central
task in human-computer interfaces. Andreas et al.
(2013) first proposed to rely on machine transla-
tion models for semantic parsing, where the target
representation is linearized and treated as a for-
eign language. Due to recent advances in deep
learning and especially in sequence-to-sequence
(seq2seq) with attention architectures for machine
translation (Bahdanau et al., 2015), it is appealing
to use the same architectures for standard struc-
tured prediction problems (Vinyals et al., 2015).
This approach is indeed common in semantic pars-
ing (Jia and Liang, 2016; Dong and Lapata, 2016;
Wang et al., 2020), inter alia. Unfortunately, there
are well known limitations to seq2seq architectures
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for semantic parsing. First, at test time, the decod-
ing algorithm is typically based on beam search
as the model is autoregressive and does not make
any independence assumption. In case of predic-
tion failure, it is therefore unknown if this is due to
errors in the weighting function or to the optimal
solution failing out of the beam. Secondly, they are
known to fail when compositional generalization is
required (Lake and Baroni, 2018; Finegan-Dollak
et al., 2018a; Keysers et al., 2020).

In order to bypass these problems, Herzig and
Berant (2021) proposed to represent the semantic
content associated with an utterance as a phrase
structure, i.e. using the same representation usu-
ally associated with syntactic constituents. As
such, their semantic parser is based on standard
span-based decoding algorithms (Hall et al., 2014;
Stern et al., 2017; Corro, 2020) with additional
well-formedness constraints from the semantic for-
malism. Given a weighting function, MAP infer-
ence is a polynomial time problem that can be
solved via a variant of the CYK algorithm (Kasami,
1965; Younger, 1967; Cocke, 1970). Experimen-
tally, Herzig and Berant (2021) show that their
approach outperforms seq2seq models in terms of
compositional generalization, therefore effectively
bypassing the two major problems of these archi-
tectures.

The complexity of MAP inference for phrase
structure parsing is directly impacted by the search
space considered (Kallmeyer, 2010). Importantly,
(ill-nested) discontinuous phrase structure parsing
is known to be NP-hard, even with a bounded block-
degree (Satta, 1992). Herzig and Berant (2021)
explore two restricted inference algorithms, both of
which have a cubic time complexity with respect
to the input length. The first one only considers
continuous phrase structures, i.e. derived trees that
could have been generated by a context-free gram-
mar, and the second one also considers a specific
type of discontinuities, see Corro (2020, Section
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What state has the most major cities ?

∅ state loc_1 ∅ most major city_all ∅

join : loc_1 join : city_all

join : major(city_all)

join : loc_1(major(city_all))

join : state(loc_1(major(city_all)))

join : most(state(loc_1(major(city_all))))

join : most(state(loc_1(major(city_all))))

Figure 1: Example of a semantic phrase structure
from GEOQUERY. This structure is outside of the
search space of the parser of Herzig and Berant
(2021) as the constituent in red is discontinuous
and also has a discontinuous parent (in red+green).

3.6). Both algorithms fail to cover the full set of
phrase structures observed in semantic treebanks,
see Figure 1.

In this work, we propose to reduce semantic pars-
ing without reentrancy (i.e. a given predicate or
entity cannot be used as an argument for two differ-
ent predicates) to a bi-lexical dependency parsing
problem. As such, we tackle the same semantic
content as aforementioned previous work but using
a different mathematical representation (Rambow,
2010). We identify two main benefits to our ap-
proach: (1) as we allow crossing arcs, i.e. “non-
projective graphs”, all datasets are guaranteed to
be fully covered and (2) it allows us to rely on opti-
mization methods to tackle inference intractability
of our novel graph-based formulation of the prob-
lem. More specifically, in our setting we need to
jointly assign predicates/entities to words that con-
vey a semantic content and to identify arguments
of predicates via bi-lexical dependencies. We show
that MAP inference in this setting is equivalent to
the maximum generalized spanning arborescence
problem (Myung et al., 1995) with supplementary
constraints to ensure well-formedness with respect
to the semantic formalism. Although this problem
is NP-hard, we propose an optimization algorithm
that solves a linear relaxation of the problem and
can deliver an optimality certificate.

Our contributions can be summarized as follows:

• We propose a novel graph-based approach for

exclude ( river_all , traverse_2 ( stateid ) )

exclude

river_all traverse_2

stateid
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do not
excl.

run through
traverse_2

Tennessee
stateid

?

What state
state
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most

major
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Figure 2: (top) The semantic program correspond-
ing to the sentence “What rivers do not run through
Tennessee?” in the GEOQUERY dataset. (middle)
The associated AST. (bottom) Two examples illus-
trating the intuition of our model: we jointly assign
predicates/entities and identify argument depen-
dencies. As such, the resulting structure is strongly
related to a syntactic dependency parse, but where
the dependency structure do not cover all words.

semantic parsing without reentrancy;

• We prove the NP-hardness of MAP inference
and latent anchoring inference;

• We propose a novel integer linear program-
ming formulation for this problem together
with an approximate solver based on condi-
tional gradient and constraint smoothing;

• We tackle the training problem using varia-
tional approximations of objective functions,
including the weakly-supervised scenario;

• We evaluate our approach on GEOQUERY,
SCAN and CLEVR and observe that it outper-
forms baselines on both i.i.d. splits and splits
that test for compositional generalization.

Code to reproduce the experiments is available on-
line.1

2 Graph-based semantic parsing

We propose to reduce semantic parsing to parsing
the abstract syntax tree (AST) associated to a se-
mantic program. We focus on semantic programs

1https://github.com/alban-petit/
semantic-dependency-parser
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Which states do not border texas ?

exclude

next_to_2

stateid

state_all

(a)

Which states do not border texas ?

∅
exclude
next_to_2
stateid
state_all
area_1

(b)

Figure 3: (a) Example of a sentence and its associated AST (solid arcs) from the GEOQUERY dataset.
The dashed edges indicate predicates and entities anchors (note that this information is not available in the
dataset). (b) The corresponding generalized valency-constrained not-necessarily-spanning arborescence
(red arcs). The root is the isolated top left vertex. Adding ∅ tags and dotted orange arcs produces a
generalized spanning arborescence.

whose ASTs do not have any reentrancy, i.e. a sin-
gle predicate or entity cannot be the argument of
two different predicates. Moreover, we assume that
each predicate or entity is anchored on exactly one
word of the sentence and each word can be the an-
chor of at most one predicate or entity. As such, the
semantic parsing problem can be reduced to assign-
ing predicates and entities to words and identifying
arguments via dependency relations, see Figure 2.
In order to formalize our approach to the semantic
parsing problem, we will use concepts from graph
theory. We therefore first introduce the vocabulary
and notions that will be useful in the rest of this
article. Notably, the notions of cluster and gener-
alized arborescence will be used to formalize our
prediction problem.

Notations and definitions. LetG = ⟨V,A⟩ be a
directed graph with vertices V and arcsA ⊆ V ×V .
An arc in A from a vertex u ∈ V to a vertex v ∈ V
is denoted either a ∈ A or u → v ∈ A. For any
subset of vertices U ⊆ V , we denote σ+G(U) (resp.
σ−G(U)) the set of arcs leaving one vertex of U
and entering one vertex of V \U (resp. leaving one
vertex of V \U and entering one vertex of U ) in the
graphG. LetB ⊆ A be a subset of arcs. We denote
V [B] the cover set of B, i.e. the set of vertices that
appear as an extremity of at least one arc in B. A
graph G = ⟨V,A⟩ is an arborescence2 rooted at

2In the NLP community, arborescences are often called
(directed) trees. We stick with the term arborescence as it
is more standard in the graph theory literature, see for ex-
ample Schrijver (2003). Using the term tree introduces a
confusion between two unrelated algorithms, Kruskal’s maxi-
mum spanning tree algorithm (Kruskal, 1956) that operates on
undirected graphs and Edmond’s maximum spanning arbores-
cence algorithm (Edmonds, 1967) that operates on directed

u ∈ V if and only if (iff) it contains |V | − 1 arcs
and there is a directed path from u to each vertex
in V . In the rest of this work, we will assume
that the root is always vertex 0 ∈ V . Let B ⊆ A
be a set of arcs such that G′ = ⟨V [B], B⟩ is an
arborescence. Then G′ is a spanning arborescence
of G iff V [B] = V .

Let π = {V0, ..., Vn} be a partition of V con-
taining n + 1 clusters. G′ is a generalized not-
necessarily-spanning arborescence (resp. general-
ized spanning arborescence) on the partition π ofG
iffG′ is an arborescence and V [B] contains at most
one vertex per cluster in π (resp. contains exactly
one).

Let W ⊆ V be a set of vertices. Contracting W
consists in replacing inG the setW by a new vertex
w /∈ V , replacing all the arcs u→ v ∈ σ−(W ) by
an arc u→ w and all the arcs u→ v ∈ σ+(W ) by
an arc w → v. Given a graph with partition π, the
contracted graph is the graph where each cluster in
π has been contracted. While contracting a graph
may introduce parallel arcs, it is not an issue in
practice, even for weighted graphs.

2.1 Semantic grammar and AST.

The semantic programs we focus on take the form
of a functional language, i.e. a representation where
each predicate is a function that takes other pred-
icates or entities as arguments. The semantic lan-
guage is typed in the same sense than in “typed
programming languages”. For example, in GEO-
QUERY, the predicate capital_2 expects an ar-

graphs. Moreover, this prevents any confusion between the
graph object called arborescence and the semantic structure
called AST.
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gument of type city and returns an object of type
state. In the datasets we use, the typing sys-
tem disambiguates the position of arguments in
a function: for a given function, either all argu-
ments are of the same type or the order of argu-
ments is unimportant — an example of both is
the predicate intersection_river in GEO-
QUERY that takes two arguments of type river,
but the result of the execution is unchanged if the
arguments are swapped.3

Formally, we define the set of valid seman-
tic programs as the set of programs that can
be produced with a semantic grammar G =
⟨E, T, fTYPE, fARGS⟩ where:

• E is the set of predicates and entities, which
we will refer to as the set of tags — w.l.o.g.
we assume that ROOT /∈ E where ROOT is a
special tag used for parsing;

• T is the set of types;

• fTYPE : E → T is a typing function that as-
signs a type to each tag;

• fARGS : E×T → N is a valency function that
assigns the numbers of expected arguments of
a given type to each tag.

A tag e ∈ E is an entity iff ∀t ∈ T : fARGS(e, t) =
0. Otherwise, e is a predicate.

A semantic program in a functional language
can be equivalently represented as an AST, a graph
where instances of predicates and entities are rep-
resented as vertices and where arcs identify argu-
ments of predicates. Formally, an AST is a labeled
graph G = ⟨V,A, l⟩ where function l : V → E
assigns a tag to each vertex and arcs identify the
arguments of tags, see Figure 2. An AST G is well-
formed with respect to the grammar G iff G is an
arborescence and the valency and type constraints
are satisfied, i.e. ∀u ∈ V, t ∈ T :

fARGS(l(u), t) = |σ+G({u}, t)|

where:

σ+G({u}, t) =
{
u→ v ∈ σ+G({u})
s.t. fTYPE(l(v)) = t

}
.

3There are a few corner cases like exclude_river, for
which we simply assume arguments are in the same order as
they appear in the input sentence.

2.2 Problem reduction and complexity

In our setting, semantic parsing is a joint sentence
tagging and dependency parsing problem (Bohnet
and Nivre, 2012; Li et al., 2011; Corro et al., 2017):
each content word (i.e. words that convey a se-
mantic meaning) must be tagged with a predicate
or an entity, and dependencies between content
words identify arguments of predicates, see Fig-
ure 2. However, our semantic parsing setting differs
from standard syntactic analysis in two ways: (1)
the resulting structure is not-necessarily-spanning,
there are words (e.g. function words) that must not
be tagged and that do not have any incident de-
pendency — and those words are not known in
advance, they must be identified jointly with the
rest of the structure; (2) the dependency structure is
highly constrained by the typing mechanism, that
is the predicted structure must be a valid AST. Nev-
ertheless, similarly to aforementioned works, our
parser is graph-based, that is for a given input we
build a (complete) directed graph and decoding is
reduced to computing a constrained subgraph of
maximum weight.

Given a sentence w = w1...wn with n words
and a grammar G, we construct a clustered labeled
graph G = ⟨V,A, π, l̄⟩ as follows. The partition
π = {V0, ..., Vn} contains n + 1 clusters, where
V0 is a root cluster and each cluster Vi, i ̸= 0, is
associated to word wi. The root cluster V0 = {0}
contains a single vertex that will be used as the root
and every other cluster contains |E| vertices. The
extended labeling function l̄ : V → E ∪ {ROOT}
assigns a tag in E to each vertex v ∈ V \ {0} and
ROOT to vertex 0. Distinct vertices in a cluster Vi
cannot have the same label, i.e. ∀u, v ∈ Vi : u ̸=
v =⇒ l̄(u) ̸= l̄(v).

Let B ⊆ A be a subset of arcs. The graph
G′ = ⟨V [B], B⟩ defines a 0-rooted generalized
valency-constrained not-necessarily-spanning ar-
borescence iff it is a generalized arborescence of
G, there is exactly one arc leaving 0 and the sub-
arborescence rooted at the destination of that arc
is a valid AST with respect to the grammar G. As
such, there is a one-to-one correspondence between
ASTs anchored on the sentence w and generalized
valency-constrained not-necessarily-spanning ar-
borescences in the graph G, see Figure 3b.

For any sentence w, our aim is to find the AST
that most likely corresponds to it. Thus, after build-
ing the graph G as explained above, the neural
network described in Appendix B is used to pro-
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duce a vector of weightsµ ∈ R|V | associated to the
set of vertices V and a vector of weights ϕ ∈ R|A|

associated to the set of arcsA. Given these weights,
graph-based semantic parsing is reduced to an opti-
mization problem called the maximum generalized
valency-constrained not-necessarily-spanning ar-
borescence (MGVCNNSA) in the graph G.

Theorem 1. The MGVCNNSA problem is NP-hard.

The proof is in Appendix A.

2.3 Mathematical program

Our graph-based approach to semantic parsing has
allowed us to prove the intrinsic hardness of the
problem. We follow previous work on graph-based
parsing (Martins et al., 2009; Koo et al., 2010),
inter alia, by proposing an integer linear program-
ming (ILP) formulation in order to compute (ap-
proximate) solutions.

Remember that in the joint tagging and de-
pendency parsing interpretation of the semantic
parsing problem, the resulting structure is not-
necessarily-spanning, meaning that some words
may not be tagged. In order to rely on well-known
algorithms for computing spanning arborescences
as a subroutine of our approximate solver, we first
introduce the notion of extended graph. Given
a graph G = ⟨V,A, π, l̄⟩, we construct an ex-
tended graph G = ⟨V ,A, π, l̄⟩4 containing n addi-
tional vertices {1, ..., n} that are distributed along
clusters, i.e. π = {V0, V1 ∪ {1}, ..., Vn ∪ {n}},
and arcs from the root to these extra vertices, i.e.
A = A ∪ {0 → i|1 ≤ i ≤ n}. Let B ⊆ A be
a subset of arcs such that ⟨V [B], B⟩ is a gener-
alized not-necessarily-spanning arborescence on
G. Let B ⊆ A be a subset of arcs defined as
B = B ∪ {0 → i|σ−⟨V [B],B⟩(Vi) = ∅}. Then,
there is a one-to-one correspondence between gen-
eralized not-necessarily-spanning arborescences
⟨V [B], B⟩ and generalized spanning arborescences
⟨V [B], B⟩, see Figure 3b.

Let x ∈ {0, 1}|V | and y ∈ {0, 1}|A| be vari-
able vectors indexed by vertices and arcs such that
a vertex v ∈ V (resp. an arc a ∈ A) is selected
iff xv = 1 (resp. ya = 1). The set of 0-rooted
generalized valency-constrained spanning arbores-
cences on G can be written as the set of variables
⟨x,y⟩ satisfying the following linear constraints.
First, we restrict y to structures that are spanning
arborescences over G where clusters have been

4The labeling function is unchanged as there is no need for
types for vertices in V \ V .

contracted:∑
a∈σ−

G
(V0)

ya = 0 (1)

∑
a∈σ−

G

(⋃
U∈π′ U

) ya ≥ 1 ∀π′ ⊆ π \ {V0} (2)

∑
a∈σ−

G
(Vi)

ya = 1 ∀Vi ∈ π \ {V0} (3)

Constraints (2) ensure that the contracted graph is
weakly connected. Constraints (3) force each clus-
ter to have exactly one incoming arc. The set of
vectors y that satisfy these three constraints are ex-
actly the set of 0-rooted spanning arborescences on
the contracted graph, see Schrijver (2003, Section
52.4) for an in-depth analysis of this polytope. The
root vertex is always selected and other vertices are
selected iff they have one incoming selected arc:

x0 = 1 (4)

xu =
∑

a∈σ−
G
({u})

ya ∀u ∈ V \ {0} (5)

Note that constraints (1)–(3) do not force selected
arcs to leave from a selected vertex as they operate
at the cluster level. This property will be enforced
via the valency constraints:∑

u∈V \{0}

y0→u = 1 (6)

∑
a∈σ+

G({u},t)

ya = xufARGS(l(u), t) ∀t ∈ T,
u ∈ V \ {0}

(7)

Constraint (6) forces the root to have exactly one
outgoing arc into a vertex u ∈ V \{0} (i.e. a vertex
that is not part of the extra vertices introduced in
the extended graph) that will be the root of the AST.
Constraints (7) force the selected vertices and arcs
to produce a well-formed AST with respect to the
grammar G. Note that these constraints are only
defined for vertices in V \ {0}, i.e. they are neither
defined for the root vertex nor for the extra vertices
introduced in the extended graph.

To simplify notations, we introduce the follow-
ing sets:

C(sa) =

{
⟨x,y⟩ ∈ {0, 1}V × {0, 1}A
s.t. x and y satisfy (1)–(5)

}
,

C(val) =

{
⟨x,y⟩ ∈ {0, 1}V × {0, 1}A
s.t. x and y satisfy (6)–(7)

}
,
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and C = C(sa) ∩ C(val). Given vertex weights
µ ∈ R|V | and arc weights ϕ ∈ R|A|, computing
the MGVCNNSA is equivalent to solving the fol-
lowing ILP:

(ILP1) max
x,y

µ⊤x+ ϕ⊤y

s.t. ⟨x,y⟩ ∈ C(sa) and ⟨x,y⟩ ∈ C(val)

Without constraint ⟨x,y⟩ ∈ C(val), the problem
would be easy to solve. The set C(sa) is the set of
spanning arborescences over the contracted graph,
hence to maximize over this set we can simply: (1)
contract the graph and assign to each arc in the
contracted graph the weight of its corresponding
arc plus the weight of its destination vertex in the
original graph; (2) run the the maximum spanning
arborescence algorithm (MSA, Edmonds, 1967;
Tarjan, 1977) on the contracted graph, which has a
O(n2) time-complexity. This process is illustrated
on Figure 5 (top). Note that the contracted graph
may have parallel arcs, which is not an issue in
practice as only the one of maximum weight can
appear in a solution of the MSA.

We have established that MAP inference in our
semantic parsing framework is a NP-hard problem.
We proposed an ILP formulation of the problem
that would be easy to solve if some constraints
were removed. This property suggests the use of
an approximation algorithm that introduces the dif-
ficult constraints as penalties. As a similar setting
arises from our weakly supervised loss function,
the presentation of the approximation algorithm is
deferred until Section 4.

3 Training objective functions

3.1 Supervised training objective
We define the likelihood of a pair ⟨x,y⟩ ∈ C via
the Boltzmann distribution:

pµ,ϕ(x,y) = exp(µ⊤x+ ϕ⊤y − c(µ,ϕ)),

where c(µ,ϕ) is the log-partition function:

c(µ,ϕ) = log
∑

⟨x′,y′⟩∈C

exp(µ⊤x′ + ϕ⊤y′).

During training, we aim to maximize the log-
likelihood of the training dataset. The log-
likelihood of an observation ⟨x,y⟩ is defined as:

ℓ(µ,ϕ;x,y) = log pµ,ϕ(x,y)

= µ⊤x+ ϕ⊤y − c(µ,ϕ).

Unfortunately, computing the log-partition func-
tion is intractable as it requires summing over all
feasible solutions. Instead, we rely on a surrogate
lower-bound as an objective function. To this end,
we derive an upper bound (because it is negated
in ℓ) to the second term: a sum of log-sum-exp
functions that sums over each cluster of vertices in-
dependently and over incoming arcs in each cluster
independently, which is tractable. This loss can be
understood as a generalization of the head selec-
tion loss used in dependency parsing (Zhang et al.,
2017). We now detail the derivation and prove that
it is an upper bound to the log-partition function.

Let U be a matrix such that each row contains a
pair ⟨x,y⟩ ∈ C and ∆|C| be the simplex of dimen-
sion |C| − 1, i.e. the set of all stochastic vectors of
dimension |C|. The log-partition function can then
be rewritten using its variational formulation:

c(µ,ϕ) = max
p∈∆|C|

p⊤
(
U

[
µ
ϕ

])
+H[p],

where H[p] = −
∑

i pi log pi is the Shannon en-
tropy. We refer the reader to Boyd and Vanden-
berghe (2004, Example 3.25), Wainwright and
Jordan (2008, Section 3.6) and Beck (2017, Sec-
tion 4.4.10). Note that this formulation remains
impractical as p has an exponential size. Let
M = conv(C) be the marginal polytope, i.e. the
convex hull of the feasible integer solutions, we
can rewrite the above variational formulation as:

= max
m∈M

m⊤
[
µ
ϕ

]
+HM[m]

where HM is a joint entropy function defined such
that the equality holds. The maximization in this
reformulation acts on the marginal probabilities of
parts (vertices and arcs) and has therefore a polyno-
mial number of variables. We refer the reader to
Wainwright and Jordan (2008, 5.2.1) and Blondel
et al. (2020, Section 7) for more details. Unfortu-
nately, this optimization problem is hard to solve
asM cannot be caracterized in an explicit manner
and HM is defined indirectly and lacks a polyno-
mial closed form (Wainwright and Jordan, 2008,
Section 3.7). However, we can derive an upper
bound to the log-partition function by decompos-
ing the entropy term HM (Cover, 1999, Property 4
on page 41, i.e. H is an upper bound) and by using
an outer approximation to the marginal polytope
L ⊇M (i.e. increasing the search space):

≤ max
m∈L

m⊤
[
µ
ϕ

]
+H[m]
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M

×
L

Figure 4: Polyhedrons illustration. The solid lines
represent the convex hull of feasible solutions of
ILP1, denotedM, whose vertices are feasible in-
teger solutions (black vertices). The dashed lines
represent the convex hull of feasible solutions of
the linear relaxation of ILP1, which has non inte-
gral vertices (in white). Finally, the dotted lines
represent the polyhedron L that is used to approxi-
mate c(µ,ϕ). All its vertices are integral, but some
of them are not feasible solutions of ILP1.

In particular, we observe that each pair ⟨x,y⟩ ∈ C
has exactly one vertex selected per cluster Vi ∈ π
and one incoming arc selected per cluster Vi ∈
π \ {V0}. We denote C(one) the set of all the pairs
⟨x,y⟩ that satisfy these constraints. By using
L = conv(C(one)) as an outer approximation to
the marginal polytope (see Figure 4) the optimiza-
tion problem can be rewritten as a sum of inde-
pendent problems. As each of these problems is
the variational formulation of a log-sum-exp term,
the upper bound on c(µ,ϕ) can be expressed as a
sum of log-sum-exp functions, one over vertices in
each cluster Vi ∈ π \ {V0} and one over incoming
arcs σ−

G
(Vi) for each cluster Vi ∈ π \ {V0}. Al-

though this type of approximation may not result
in a Bayes consistent loss (Corro, 2023), it works
well in practice.

3.2 Weakly-supervised training objective

Unfortunately, training data often does not include
gold pairs ⟨x,y⟩ but instead only the AST, without
word anchors (or word alignment). This is the case
for the three datasets we use in our experiments.
We thus consider our training signal to be the set of
all structures that induce the annotated AST, which
we denote C∗.

The weakly-supervised loss is defined as:

ℓ̃(µ,ϕ; C∗) = log
∑

⟨x,y⟩∈C∗

pµ,ϕ(x,y),

i.e. we marginalize over all the structures that in-

duce the gold AST. We can rewrite this loss as:

=

log
∑

⟨x,y⟩∈C∗

exp(µ⊤x+ ϕ⊤y)

− c(µ,ϕ).
The two terms are intractable. We approximate the
second term using the bound defined in Section 3.1.

We now derive a tractable lower bound to the
first term. Let q be a proposal distribution such
that q(x,y) = 0 if ⟨x,y⟩ /∈ C∗. We derive the
following lower bound via Jensen’s inequality:

log
∑

⟨x,y⟩∈C∗

exp(µ⊤x+ ϕ⊤y)

= logEq

[
exp(µ⊤x+ ϕ⊤y))

q(x,y)

]
≥ Eq

[
µ⊤x+ ϕ⊤y

]
+H[q].

This bound holds for any distribution q satisfying
the aforementioned condition. We choose to max-
imize this lower bound using a distribution that
gives a probability of one to a single structure, as
in “hard” EM (Neal and Hinton, 1998, Section 6).

For a given sentence w, let G = ⟨V,A, π, l̄⟩
be a graph defined as in Section 2.2 and G′ =
⟨V ′, A′, l′⟩ be an AST defined as in Section 2.1.
We aim to find the GVCNNSA in G of maximum
weight whose induced AST is exactly G′. This is
equivalent to aligning each vertex in V ′ with one
vertex of V \{0} s.t. there is at most one vertex per
cluster of π appearing in the alignment and where
the weight of an alignment is defined as:

1. for each vertex u′ ∈ V ′, we add the weight of
the vertex u ∈ V it is aligned to — moreover,
if u′ is the root of the AST we also add the
weight of the arc 0→ u;

2. for each arc u′ → v′ ∈ A′, we add the weight
of the arc u→ v where u ∈ V (resp. v ∈ V )
is the vertex u′ (resp. v′) it is aligned with.

Note that this latent anchoring inference consists
in computing a (partial) alignment between ver-
tices of G and G′, but the fact that we need to
take into account arc weights forbids the use of the
Kuhn–Munkres algorithm (Kuhn, 1955).

Theorem 2. Computing the anchoring of maximum
weight of an AST with a graph G is NP-hard.

The proof is in Appendix A.
Therefore, we propose an optimization-based

approach to compute the distribution q. Note that
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Algorithm 1 Unconstrained alignment of maximum weight between a graph G and an AST G′

function DPALIGNMENT(G,G′)
for u′ ∈ V ′ in reverse topological order do

for u ∈ {v ∈ V |l̄(v) = l′(u′)} do ▷ We can only map u′ to vertices u if they have the same tag.
CHART[u′, u]← µu +

∑
u′→v′∈σ+

G′ ({u′})
(
maxv∈V CHART[v′, v] + ϕu→v

)
return maxu∈V CHART[r′, u] + ϕ0→u ▷ Where r′ ∈ A′ is the root of the AST.

Algorithm 2 Conditional gradient
function CONDITIONALGRADIENT(G,G′)

Let z(0) ∈ conv(C(easy))
for k ∈ {0....K} do ▷ Where K is the maximum number of iterations
d←

(
lmoconv(C(easy))(∇g(z(k)))

)
− z(k) ▷ Compute the update direction

if∇g(z(k))⊤d ≤ ϵ then return z(k) ▷ If the dual gap is small, z(k) is (almost) optimal
γ ∈ argmaxγ∈[0,1] g(z

(k) + γd) ▷ Compute or approximate the optimal stepsize
z(k+1) = z(k) + γd ▷ Update the current point

return z(k)

the problem has a constraint requiring each clus-
ter Vi ∈ π to be aligned with at most one vertex
v′ ∈ V ′, i.e. each word in the sentence can be
aligned with at most one vertex in the AST. If
we remove this constraint, then the problem be-
comes tractable via dynamic programming. Indeed,
we can recursively construct a table CHART[u′, u],
u′ ∈ V ′ and u ∈ V , containing the score of align-
ing vertex u′ to vertex u plus the score of the best
alignment of all the descendants of u′. To this end,
we simply visit the vertices V ′ of the AST in re-
verse topological order, see Algorithm 1. The best
alignment can be retrieved via back-pointers.

Computing q is therefore equivalent to solving
the following ILP:

(ILP2) max
x,y

µ⊤x+ ϕ⊤y

s.t. ⟨x,y⟩ ∈ C∗(relaxed),∑
u∈Vi

xu ≤ 1 ∀Vi ∈ π.

The set C*(relaxed) is the set of feasible solutions
of the dynamic program in Algorithm 1, whose
convex hull can be described via linear constraints
(Martin et al., 1990).

4 Efficient inference

In this section, we propose an efficient way to solve
the linear relaxations of MAP inference (ILP1) and
latent anchoring inference (ILP2) via constraint
smoothing and the conditional gradient method.

We focus on problems of the following form:

max
z

f(z)

s.t. z ∈ conv(C(easy))

Az = b or Az ≤ b

where the vector z is the concatenation of the vec-
tors x and y defined previously and conv denotes
the convex hull of a set. We explained previously
that if the set of constraints of form Az = b
for (ILP1) or Az ≤ b for (ILP2) was absent,
the problem would be easy to solve under a lin-
ear objective function. In fact, there exists an ef-
ficient linear maximization oracle (LMO), i.e. a
function that returns the optimal integral solution,
for the set conv(C(easy)). This setting covers both
(ILP1) and (ILP2) where we have C(easy) = C(sa)

and C(easy) = C∗(relaxed), respectively.
An appealing approach in this setting is to intro-

duce the problematic constraints as penalties in the
objective:

max
z

f(z)− δS(Az)

s.t. z ∈ conv(C(easy))

where δS is the indicator function of the set S:

δS(Az) =

{
0 ifAz ∈ S,
+∞ otherwise.

In the equality case, we use S = {b} and in the
inequality case, we use S = {u|u ≤ b}.
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Figure 5: Illustration of the approximate inference algorithm on the two-word sentence “List states”, where
we assume the grammar has one entity state_all and one predicate loc_1 that takes exactly one entity
as argument. The left graph is the extended graph for the sentence, including vertices and arcs weights (in
black). If we ignore constraints (6)–(7), inference is reduced to computing the MSA on the contracted
graph (solid arcs in the middle column). This may lead to solutions that do not satisfy constraints (6)–(7)
on the expanded graph (top example). However, the gradient of the smoothed constraint (7) will induce
penalties (in red) to vertex and arc scores that will encourage the loc_1 predicate to either be dropped
from the solution or to have an outgoing arc to a state_all argument. Computing the MSA on the
contracted graph with penalties results in a solution that satisfies constraints (6)–(7) (bottom example).

4.1 Conditional gradient method

Given a proper, smooth and differentiable function
g and a nonempty, bounded, closed and convex
set conv(C(easy)), the conditional gradient method
(a.k.a. Frank-Wolfe, Frank and Wolfe, 1956; Lev-
itin and Polyak, 1966; Lacoste-Julien and Jaggi,
2015) can be used to solve optimization problems
of the following form:

max
z

g(z) s.t. z ∈ conv(C(easy))

Contrary to the projected gradient method, this
approach does not require to compute projections
onto the feasible set conv(C(easy)) which is, in most
cases, computationally expensive. Instead, the con-
ditional gradient method only relies on a LMO:

lmoC(easy)(ψ) ∈ argmax
z∈conv(C(easy))

ψ⊤z.

The algorithm constructs a solution to the origi-
nal problem as a convex combination of elements
returned by the LMO. The pseudo-code is given
in Algorithm 2. An interesting property of this
method is that its step size range is bounded. This
allows for simple linesearch techniques.

4.2 Smoothing
Unfortunately, the function g(z) = f(z)−δS(Az)
is non-smooth due to the indicator function term,
preventing the use of the conditional gradient
method. We propose to rely on the framework
proposed by Yurtsever et al. (2018) where the in-
dicator function is replaced by a smooth approxi-
mation. The indicator function of the set S can be
rewritten as:

δS(Az) = δ∗∗S (Az) = sup
u
u⊤Az − σS(u),

where δ∗∗S denotes the Fenchel biconjugate of the
indicator function and σS(u) = supt∈S u

⊤t is
the support function of S. More details can be
found in Beck (2017, Section 4.1 and 4.2). In
order to smooth the indicator function, we add a
β-parameterized convex regularizer −β

2 ∥ · ∥
2
2 to its

Fenchel biconjugate:

δ∗∗S,β(Az) = max
u
u⊤Az − σS(u)−

β

2
∥u∥22

where β > 0 controls the quality and the smooth-
ness of the approximation (Nesterov, 2005).

Equalities. In the case where S = {b}, with
a few computations that are detailed by Yurtsever
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et al. (2018), we obtain:

δ∗∗{b},β(Az) =
1

2β
∥Az − b∥22.

That is, we have a quadratic penalty term in the
objective. Note that this term is similar to the term
introduced in an augmented Lagrangian (Nocedal
and Wright, 1999, Equation 17.36), and adds a
penalty in the objective for vectors z s.t.Az ̸= b.

Inequalities. In the case where S = {u|u ≤ b},
similar computations lead to:

δ∗∗≤b,β(Az) =
1

2β
∥[Az − b]+∥22

where [·]+ denotes the Euclidian projection into the
non-negative orthant (i.e. clipping negative values).
Similarly to the equality case, this term introduces
a penalty in the objective for vectors z s.t.Az > b.
This penalty function is also called the Courant-
Beltrami penalty function.

Figure 5 (bottom) illustrates how the gradient
of the penalty term can “force” the LMO to return
solutions that satisfy the smoothed constraints.

4.3 Practical details
Smoothness. In practice, we need to choose the
smoothness parameter β. We follow Yurtsever et al.
(2018) and use β(k) = β(0)

√
k+1

where k is the itera-

tion number and β(0) = 1.
Step size. Another important choice in the al-

gorithm is the step size γ. We show that when the
smoothed constraints are equalities, computing the
optimal step size has a simple closed form solution
if the function f is linear, which is the case for
(ILP1), i.e. MAP decoding. The step size problem
formulation at iteration k is defined as:

argmax
γ∈[0,1]

f(z(k) + γd)− ∥A(z(k) + γd)− b∥2

2β

By assumption, f is linear and can be written as
f(z) = θ⊤z. Ignoring the box constraints on γ,
by first order optimality conditions, we have:

γ =
−βθ⊤d+ (Ad)⊤b− (Ad)⊤(Az(k))

∥Ad∥2

We can then simply clip the result so that it satisfies
the box constraints. Unfortunately, in the inequali-
ties case, there is no simple closed form solution.
We approximate the step size using 10 iterations of
the bisection algorithm for root finding.

Non-integral solutions. As we solve the linear
relaxation of original ILPs, the optimal solutions
may not be integral. Therefore, we use simple
heuristics to construct a feasible solution to the
original ILP in these cases. For MAP inference, we
simply solve the ILP5 using CPLEX but introduc-
ing only variables that have a non-null value in the
linear relaxation, leading to a very sparse problem
which is fast to solve. For latent anchoring, we
simply use the Kuhn–Munkres algorithm using the
non-integral solution as assignment costs.

5 Experiments

We compare our method to baseline systems both
on i.i.d. splits (IID) and splits that test for composi-
tional generalization for three datasets. The neural
network is described in Appendix B.

Datasets. SCAN (Lake and Baroni, 2018) con-
tains natural language navigation commands. We
use the variant of Herzig and Berant (2021) for
semantic parsing. The IID split is the simple split
(Lake and Baroni, 2018). The compositional splits
are primitive right (RIGHT) and primitive around
right (ARIGHT) (Loula et al., 2018).

GEOQUERY (Zelle and Mooney, 1996) uses the
FunQL formalism (Kate et al., 2005) and contains
questions about the US geography. The IID split is
the standard split and compositional generalization
is evaluated on two splits: LENGTH where the ex-
amples are split by program length and TEMPLATE

(Finegan-Dollak et al., 2018a) where they are split
such that all semantic programs having the same
AST are in the same split.

CLEVR (Johnson et al., 2017) contains synthetic
questions over object relations in images. CLO-
SURE (Bahdanau et al., 2019) introduces additional
question templates that require compositional gen-
eralization. We use the original split as our IID

split and the CLOSURE split as a compositional
split where the model is evaluated on CLOSURE.

Baselines. We compare our approach against the
architecture proposed by Herzig and Berant (2021)
(SPANBASEDSP) as well as the seq2seq baselines
they used. In SEQ2SEQ (Jia and Liang, 2016),
the encoder is a bi-LSTM over pre-trained GloVe
embeddings (Pennington et al., 2014) or ELMO

(Peters et al., 2018) and the decoder is an attention-
based LSTM (Bahdanau et al., 2015). BERT2SEQ

replaces the encoder with BERT-base. GRAM-

5We use the multi-commodity flow formulation of Martins
et al. (2009) instead of the cycle breaking constraints (2).
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SCAN GEOQUERY CLEVR

IID RIGHT ARIGHT IID TEMPLATE LENGTH IID CLOSURE

Baselines (denotation accuracy only)

SEQ2SEQ 99.9 11.6 0 78.5 46.0 24.3 100 59.5
+ ELMO 100 54.9 41.6 79.3 50.0 25.7 100 64.2
BERT2SEQ 100 77.7 95.3 81.1 49.6 26.1 100 56.4
GRAMMAR 100 0.0 4.2 72.1 54.0 24.6 100 51.3
BART 100 50.5 100 87.1 67.0 19.3 100 51.5
SPANBASEDSP 100 100 100 86.1 82.2 63.6 96.7 98.8

Our approach

Denotation accuracy 100 100 100 92.9 89.9 74.9 100 99.6↱
Corrected executor 91.8 88.7 74.5

Exact match 100 100 100 90.7 86.2 69.3 100 99.6↱
w/o CPLEX heuristic 100 100 100 90.0 83.0 67.5 100 98.0

Table 1: Denotation and exact match accuracy on the test sets. All the baseline results were taken from
Herzig and Berant (2021). For our approach, we also report exact match accuracy, i.e. the percentage of
sentences for which the prediction is identical to the gold program. The last line reports the exact match
accuracy without the use of CPLEX to round non integral solutions (Section 4.3).

MAR is similar to SEQ2SEQ but the decoding is
constrained by a grammar. BART (Lewis et al.,
2020) is pre-trained as a denoising autoencoder.

Results. We report the denotation accuracies
in Table 1. Our approach outperforms all other
methods. In particular, the seq2seq baselines suf-
fer from a significant drop in accuracy on splits
that require compositional generalization. While
SPANBASEDSP is able to generalize, our approach
outperforms it. Note that we observed that the
GEOQUERY execution script used to compute de-
notation accuracy in previous work contains several
bugs that overestimate the true accuracy. Therefore,
we also report denotation accuracy with a corrected
executor6 (see Appendix C) for fair comparison
with future work.

We also report exact match accuracy, with and
without the heuristic to construct integral solutions
from fractional ones. The exact match accuracy
is always lower or equal to the denotation accu-
racy. This shows that our approach can sometimes
provide the correct denotation even though the pre-
diction is different from the gold semantic program.
Importantly, while our approach outperforms base-
lines, its accuracy is still significantly worse on the
split that requires to generalize to longer programs.

6https://github.com/alban-petit/
geoquery-funql-executor

6 Related work

Graph-based methods. Graph-based methods
have been popularized by syntactic dependency
parsing (McDonald et al., 2005) where MAP infer-
ence is realized via the maximum spanning arbores-
cence algorithm (Chu and Liu, 1965; Edmonds,
1967). A benefit of this algorithm is that it has
a O(n2) time-complexity (Tarjan, 1977), i.e. it
is more efficient than algorithms exploring more
restricted search spaces (Eisner, 1997; Gómez-
Rodríguez et al., 2011; Pitler et al., 2012, 2013).

In the case of semantic structures, Kuhlmann
and Jonsson (2015) proposed a O(n3) algorithm
for the maximum non-necessarily-spanning acyclic
graphs with a noncrossing arc constraint. Without
the noncrossing constraint, the problem is known
to be NP-hard (Grötschel et al., 1985). To bypass
this computational complexity, Dozat and Manning
(2018) proposed to handle each dependency as an
independent binary classification problem, that is
they do not enforce any constraint on the output
structure. Note that, contrary to our work, these
approaches allow for reentrancy but do not enforce
well-formedness of the output with respect to the
semantic grammar. Lyu and Titov (2018) use a
similar approach for AMR parsing where tags are
predicted first, followed by arc predictions and fi-
nally heuristics are used to ensure the output graph
is valid. On the contrary, we do not use a pipeline
and we focus on joint decoding where validity of
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the output is directly encoded in the search space.
Previous work in the literature has also consid-

ered reduction to graph-based methods for other
problems, e.g. for discontinuous constituency pars-
ing (Fernández-González and Martins, 2015; Corro
et al., 2017), lexical segmentation (Constant and
Le Roux, 2015) and machine translation (Za-
slavskiy et al., 2009), inter alia.

Compositional generalization. Several authors
observed that compositional generalization insuffi-
ciency is an important source of error for semantic
parsers, especially ones based on seq2seq archi-
tectures (Lake and Baroni, 2018; Finegan-Dollak
et al., 2018b; Herzig and Berant, 2019; Keysers
et al., 2020). Wang et al. (2021) proposed a latent
re-ordering step to improve compositional general-
ization, whereas Zheng and Lapata (2021) relied on
latent predicate tagging in the encoder. There has
also been an interest in using data augmentation
methods to improve generalization (Jia and Liang,
2016; Andreas, 2020; Akyürek et al., 2021; Qiu
et al., 2022; Yang et al., 2022).

Recently, Herzig and Berant (2021) showed that
span-based parsers do not exhibit such problem-
atic behavior. Unfortunately, these parsers fail to
cover the set of semantic structures observed in
English treebanks, and we hypothesize that this
would be even worse for free word order languages.
Our graph-based approach does not exhibit this
downside. Previous work by Jambor and Bahdanau
(2022) also considered graph-based methods for
compositional generalization, but their approach
predicts each part independently without any well-
formedness or acyclicity constraint.

7 Conclusion

In this work, we focused on graph-based semantic
parsing for formalisms that do not allow reentrancy.
We conducted a complexity study of two inference
problems that appear in this setting. We proposed
ILP formulations of these problems together with
a solver for their linear relaxation based on the
conditional gradient method. Experimentally, our
approach outperforms comparable baselines.

One downside of our semantic parser is speed
(we parse approximately 5 sentences per second
for GEOQUERY). However, we hope this work will
give a better understanding of the semantic parsing
problem together with baseline for faster methods.

Future research will investigate extensions for
(1) ASTs that contain reentrancies and (2) predic-

tion algorithms for the case where a single word
can be the anchor of more than one predicate or en-
tity. These two properties are crucial for semantic
representations like Abstract Meaning Representa-
tion (Banarescu et al., 2013). Moreover, even if our
graph-based semantic parser provides better results
than previous work on length generalization, this
setting is still difficult. A more general research
direction on neural architectures that generalize
better to longer sentences is important.

Acknowledgments

We thank François Yvon and the anonymous re-
viewers for their comments and suggestions. We
thank Jonathan Herzig and Jonathan Berant for
fruitful discussions. This work benefited from com-
putations done on the Saclay-IA platform and on
the HPC resources of IDRIS under the allocation
2022-AD011013727 made by GENCI.

References

Ekin Akyürek, Afra Feyza Akyürek, and Jacob
Andreas. 2021. Learning to recombine and re-
sample data for compositional generalization. In
International Conference on Learning Represen-
tations.

Jacob Andreas. 2020. Good-enough compositional
data augmentation. In Proceedings of the 58th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 7556–7566, Online.
Association for Computational Linguistics.

Jacob Andreas, Andreas Vlachos, and Stephen
Clark. 2013. Semantic parsing as machine trans-
lation. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 47–52,
Sofia, Bulgaria. Association for Computational
Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd
International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

Dzmitry Bahdanau, Harm de Vries, Timothy J.
O’Donnell, Shikhar Murty, Philippe Beaudoin,
Yoshua Bengio, and Aaron C. Courville. 2019.

12

https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://aclanthology.org/P13-2009
https://aclanthology.org/P13-2009
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473


CLOSURE: Assessing systematic generalization
of CLEVR models. CoRR, abs/1912.05783.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and
Nathan Schneider. 2013. Abstract Meaning Rep-
resentation for sembanking. In Proceedings of
the 7th Linguistic Annotation Workshop and In-
teroperability with Discourse, pages 178–186,
Sofia, Bulgaria. Association for Computational
Linguistics.

Amir Beck. 2017. First-Order Methods in Opti-
mization. SIAM.

Mathieu Blondel, André F.T. Martins, and Vlad
Niculae. 2020. Learning with Fenchel-Young
losses. Journal of Machine Learning Research,
21(35):1–69.

Bernd Bohnet and Joakim Nivre. 2012. A
transition-based system for joint part-of-speech
tagging and labeled non-projective dependency
parsing. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural
Language Learning, pages 1455–1465, Jeju Is-
land, Korea. Association for Computational Lin-
guistics.

Stephen Boyd and Lieven Vandenberghe. 2004.
Convex Optimization. Cambridge University
Press.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On
the shortest arborescence of a directed graph.
Scientia Sinica.

John Cocke. 1970. Programming Languages and
Their Compilers: Preliminary Notes. New York
University.

Matthieu Constant and Joseph Le Roux. 2015. De-
pendency representations for lexical segmenta-
tion. In 6th Workshop on Statistical Parsing
of Morphologically Rich Languages (SPMRL
2015), Bilbao, Spain, July.

Caio Corro. 2020. Span-based discontinuous con-
stituency parsing: a family of exact chart-based
algorithms with time complexities from O(nˆ6)
down to O(nˆ3). In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2753–2764,

Online. Association for Computational Linguis-
tics.

Caio Corro. 2023. On the inconsistency of sepa-
rable losses for structured prediction. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational
Linguistics: Main Volume. Association for Com-
putational Linguistics.

Caio Corro, Joseph Le Roux, and Mathieu Lacroix.
2017. Efficient discontinuous phrase-structure
parsing via the generalized maximum spanning
arborescence. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 1644–1654, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Thomas M. Cover. 1999. Elements of Information
Theory. John Wiley & Sons.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. In Proceed-
ings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 33–43, Berlin, Germany.
Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In International Conference on Learn-
ing Representations.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 484–
490, Melbourne, Australia. Association for Com-
putational Linguistics.

13

http://arxiv.org/abs/1912.05783
http://arxiv.org/abs/1912.05783
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
http://jmlr.org/papers/v21/19-021.html
http://jmlr.org/papers/v21/19-021.html
https://aclanthology.org/D12-1133
https://aclanthology.org/D12-1133
https://aclanthology.org/D12-1133
https://aclanthology.org/D12-1133
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/D17-1172
https://doi.org/10.18653/v1/D17-1172
https://doi.org/10.18653/v1/D17-1172
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077


Christophe Duhamel, Luis Gouveia, Pedro Moura,
and Mauricio Souza. 2008. Models and heuris-
tics for a minimum arborescence problem. Net-
works, 51(1):34–47.

Jack Edmonds. 1967. Optimum branchings. Jour-
nal of Research of the National Bureau of
Standards – B. Mathematics and Mathematical
Physics.

Jason Eisner. 1997. Bilexical grammars and a
cubic-time probabilistic parser. In Proceedings
of the Fifth International Workshop on Parsing
Technologies, pages 54–65, Boston/Cambridge,
Massachusetts, USA. Association for Computa-
tional Linguistics.

Daniel Fernández-González and André F. T. Mar-
tins. 2015. Parsing as reduction. In Proceed-
ings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the
7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 1523–1533, Beijing, China. Association
for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummer-
feld, Li Zhang, Karthik Ramanathan, Sesh Sada-
sivam, Rui Zhang, and Dragomir Radev. 2018a.
Improving text-to-SQL evaluation methodology.
In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 351–360, Mel-
bourne, Australia. Association for Computa-
tional Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummer-
feld, Li Zhang, Karthik Ramanathan, Sesh Sada-
sivam, Rui Zhang, and Dragomir Radev. 2018b.
Improving text-to-SQL evaluation methodology.
In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 351–360, Mel-
bourne, Australia. Association for Computa-
tional Linguistics.

Marguerite Frank and Philip Wolfe. 1956. An al-
gorithm for quadratic programming. Naval Re-
search Logistics Quarterly, 3(1-2):95–110.

Michael R. Garey and David S. Johnson. 1979.
Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in
the Mathematical Sciences). W. H. Freeman.

Carlos Gómez-Rodríguez, John Carroll, and David
Weir. 2011. Dependency parsing schemata and
mildly non-projective dependency parsing. Com-
putational Linguistics, 37(3):541–586.

Martin Grötschel, Michael Jünger, and Gerhard
Reinelt. 1985. Acyclic Subdigraphs and Lin-
ear Orderings: Polytopes, Facets, and a Cut-
ting Plane Algorithm, pages 217–264. Springer
Netherlands, Dordrecht.

David Hall, Greg Durrett, and Dan Klein. 2014.
Less grammar, more features. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 228–237, Baltimore, Maryland.
Association for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2019. Don’t
paraphrase, detect! Rapid and effective data
collection for semantic parsing. In Proceed-
ings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the
9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
3810–3820, Hong Kong, China. Association for
Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional gen-
eralization. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 908–921, Online.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Dora Jambor and Dzmitry Bahdanau. 2022. LAGr:
Label aligned graphs for better systematic gen-
eralization in semantic parsing. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 3295–3308, Dublin, Ireland. As-
sociation for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. In Proceedings
of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 12–22, Berlin, Germany. Associ-
ation for Computational Linguistics.

14

https://doi.org/https://doi.org/10.1002/net.20194
https://doi.org/https://doi.org/10.1002/net.20194
https://aclanthology.org/1997.iwpt-1.10
https://aclanthology.org/1997.iwpt-1.10
https://doi.org/10.3115/v1/P15-1147
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/https://doi.org/10.1002/nav.3800030109
https://doi.org/https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1162/COLI_a_00060
https://doi.org/10.1162/COLI_a_00060
https://doi.org/10.1007/978-94-009-5315-4_7
https://doi.org/10.1007/978-94-009-5315-4_7
https://doi.org/10.1007/978-94-009-5315-4_7
https://doi.org/10.3115/v1/P14-1022
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2022.acl-long.233
https://doi.org/10.18653/v1/2022.acl-long.233
https://doi.org/10.18653/v1/2022.acl-long.233
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002


Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross B. Girshick. 2017. CLEVR: A diagnostic
dataset for compositional language and elemen-
tary visual reasoning. 2017 IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR), pages 1988–1997.

Laura Kallmeyer. 2010. Parsing Beyond Context-
Free Grammars. Springer Science & Business
Media.

Tadao Kasami. 1965. An Efficient Recognition
and Syntax-Analysis Algorithm for Context-Free
Languages. Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign.

Rohit J. Kate, Yuk Wah Wong, and Raymond J.
Mooney. 2005. Learning to transform natural
to formal languages. In Proceedings of the 20th
National Conference on Artificial Intelligence
- Volume 3, AAAI’05, page 1062–1068. AAAI
Press.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
Wang, Marc van Zee, and Olivier Bousquet.
2020. Measuring compositional generalization:
A comprehensive method on realistic data. In
International Conference on Learning Represen-
tations.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective
head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, pages 1288–1298, Cam-
bridge, MA. Association for Computational Lin-
guistics.

Joseph B Kruskal. 1956. On the shortest spanning
subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathe-
matical society, 7(1):48–50.

Marco Kuhlmann and Peter Jonsson. 2015. Pars-
ing to noncrossing dependency graphs. Trans-
actions of the Association for Computational
Linguistics, 3:559–570.

Harold W. Kuhn. 1955. The Hungarian Method
for the Assignment Problem. Naval Research
Logistics Quarterly, 2(1–2):83–97.

Simon Lacoste-Julien and Martin Jaggi. 2015. On
the global linear convergence of Frank-Wolfe op-
timization variants. In Advances in Neural Infor-
mation Processing Systems, volume 28. Curran
Associates, Inc.

Brenden Lake and Marco Baroni. 2018. General-
ization without systematicity: On the composi-
tional skills of sequence-to-sequence recurrent
networks. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning
Research, pages 2873–2882. PMLR.

Evgeny S. Levitin and Boris T. Polyak. 1966. Con-
strained minimization methods. USSR Computa-
tional Mathematics and Mathematical Physics,
6(5):1–50.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880,
Online. Association for Computational Linguis-
tics.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint
models for Chinese POS tagging and depen-
dency parsing. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 1180–1191, Edinburgh,
Scotland, UK. Association for Computational
Linguistics.

João Loula, Marco Baroni, and Brenden Lake.
2018. Rearranging the familiar: Testing com-
positional generalization in recurrent networks.
In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 108–114, Brussels,
Belgium. Association for Computational Lin-
guistics.

Chunchuan Lyu and Ivan Titov. 2018. AMR pars-
ing as graph prediction with latent alignment.

15

https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.1109/CVPR.2017.215
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://aclanthology.org/D10-1125
https://aclanthology.org/D10-1125
https://aclanthology.org/D10-1125
https://doi.org/10.1162/tacl_a_00158
https://doi.org/10.1162/tacl_a_00158
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://proceedings.neurips.cc/paper/2015/file/c058f544c737782deacefa532d9add4c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/c058f544c737782deacefa532d9add4c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/c058f544c737782deacefa532d9add4c-Paper.pdf
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/D11-1109
https://aclanthology.org/D11-1109
https://aclanthology.org/D11-1109
https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037


In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 397–407, Mel-
bourne, Australia. Association for Computa-
tional Linguistics.

Richard Kipp Martin, Ronald L. Rardin, and
Brian A. Campbell. 1990. Polyhedral characteri-
zation of discrete dynamic programming. Oper-
ations Research, 38(1):127–138.

André Martins, Noah Smith, and Eric Xing. 2009.
Concise integer linear programming formula-
tions for dependency parsing. In Proceedings of
the Joint Conference of the 47th Annual Meet-
ing of the ACL and the 4th International Joint
Conference on Natural Language Processing of
the AFNLP, pages 342–350, Suntec, Singapore.
Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
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A Proofs

Proof: Theorem 1. We prove Theorem 1 by re-
ducing the maximum not-necessarily-spanning ar-
borescence (MNNSA) problem, which is known
to be NP-hard (Rao and Sridharan, 2002; Duhamel
et al., 2008), to the MGVCNNSA.

Let G = ⟨V,A,ψ⟩ be a weighted graph where
V = {0, ..., n} and ψ ∈ R|A| are arc weights. The
MNNSA problem aims to compute the subset of
arcsB ⊆ A such that ⟨V [B], B⟩ is an arborescence
of maximum weight, where its weight is defined as∑

a∈B ψa.
Let G = ⟨E, T, fTYPE, fARGS⟩ be a grammar

such that E = {0, ..., n − 1}, T = {t} and
∀e ∈ E : fTYPE(e) = t ∧ fARGS(e, t) = e. In-
tuitively, a tag e ∈ E will be associated to vertices
that require exactly e outgoing arcs.

We construct a clustered labeled weighted
graph G′ = ⟨V ′, A′, π, l,ψ′⟩ as follows. π =
{V ′

0 , ..., V
′
n} is a partition of V ′ such that each

cluster V ′
i contains n − 1 vertices and represents

the vertex i ∈ V . The labeling function l as-
signs a different tag to each vertex in a cluster, i.e.
∀V ′

i ∈ π,∀u′, v′ ∈ V ′
i : u′ ̸= v′ ⇒ l(u′) ̸= l(v′).

The set of arcs is defined as A′ = {u′ → v′|∃i→
j ∈ A s.t. u′ ∈ V ′

i ∧ v′ ∈ V ′
j }. The weight vector

ψ′ ∈ R|A′| is such that ∀u′ → v′ ∈ A′ : u′ ∈
V ′
u ∧ v′ ∈ V ′

v ⇒ ψ′
u′→v′ = ψu→v.

As such, there is a one-to-one correspondence
between solutions of the MNNSA on graph G and
solutions of the MGVCNNSA on graph G′.

Note that our proof considers that arcs leaving
from the root cluster satisfy constraints defined by
the grammar whereas we previously only required
the root vertex to have a single outgoing arc. The
latter constraint can be added directly in a gram-
mar, but we omit presentation for brevity. The
constrained arity case presented by McDonald and
Satta (2007) focuses on spanning arborescences
with an arity constraint by reducing the Hamilto-
nian path problem to their problem. While the arity
constraint is similar in their problem and ours, our
proof considers the not-necessarily-spanning case
instead of the spanning one. Although the two
problems seem related, they need to be studied sep-
arately, e.g. computing the maximum spanning ar-
borescence is a polynomial time problem whereas
computing the MNNSA is a NP-hard problem.

Proof: Theorem 2. We prove Theorem 2 by reduc-
ing the maximum directed Hamiltonian path prob-

lem, which is known to be NP-hard (Garey and
Johnson, 1979, Appendix A1.3), to the latent an-
choring.

Let G = ⟨V,A,ψ⟩ be a weighted graph where
V = {1, ..., n} and ψ ∈ R|A| are arc weights.
The maximum Hamiltonian path problem aims
to compute the subset of arcs B ⊆ A such that
V [B] = V and ⟨V [B], B⟩ is a path of maximum
weight, where its weight is defined as

∑
a∈B ψa.

Let G = ⟨E, T, fTYPE, fARGS⟩ be a grammar
such that E = {0, 1}, T = {t} and ∀e ∈ E :
fTYPE(e) = t ∧ fARGS(e, t) = e.

We construct a clustered labeled weighted
graph G′ = ⟨V ′, A′, π, l,ψ′⟩ as follows. π =
{V ′

0 , ..., V
′
n} is a partition of V ′ such that V ′

0 = {0},
each cluster V ′

i ̸= V ′
0 contains 2 vertices and rep-

resents the vertex i ∈ V . The labeling function l
assigns a different tag to each vertex in a cluster
except the root, i.e. ∀V ′

i ∈ π, i > 0, ∀u′, v′ ∈ V ′
i :

u′ ̸= v′ ⇒ l(u′) ̸= l(v′). The set of arcs is defined
as A′ = {0→ u′|u′ ∈ V ′ \ {0}} ∪ {u′ → v′|i→
j ∈ A ∧ u′ ∈ V ′

i ∧ v′ ∈ V ′
j }. The weight vector

ψ′ ∈ R|A′| is such that ∀u′ → v′ ∈ A′ : u′ ∈
V ′
u ∧ v′ ∈ V ′

v ⇒ ψ′
u′→v′ = ψu→v and arcs leaving

0 have null weights.
We construct an AST G′′ = ⟨V ′′, A′′, l′⟩ such

that V ′′ = {1, ..., n}, A′′ = {i→ i+ 1 | 1 ≤ i <
n} and the labeling function l′ assigns the tag 0 to
n and the tag 1 to every other vertex.

As such, there is a one-to-one correspondence
between solutions of the maximum Hamiltonian
path problem on graph G and solutions of the map-
ping of maximum weight of G′′ with G′.

B Experimental setup

The neural architecture used in our experiments to
produce the weights µ and ϕ is composed of: (1)
an embedding layer of dimension 100 for SCAN

or BERT-base (Devlin et al., 2019) for the other
datasets, followed by a bi-LSTM (Hochreiter and
Schmidhuber, 1997) with a hidden size of 400; (2) a
linear projection of dimension 500 over the output
of the bi-LSTM followed by a TANH activation
and another linear projection of dimension |E| to
obtain µ; (3) a linear projection of dimension 500
followed by a TANH activation and a bi-affine layer
(Dozat and Manning, 2017) to obtain ϕ.

We apply dropout with a probability of 0.3 over
the outputs of BERT-base and the bi-LSTM and
after both TANH activations. The learning rate is
5× 10−4 and each batch is composed of 30 exam-
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ples. We keep the parameters that obtain the best
accuracy on the development set after 25 epochs.
Training the model takes between 40 minutes for
GEOQUERY and 8 hours for CLEVR. However,
note that the bottleneck is the conditional gradient
method which is computed on the CPU.

C GEOQUERY denotation accuracy issue

The denotation accuracy is evaluated by checking
whether the denotation returned by an executor is
the same when given the gold semantic program
and the prediction of the model. It can be higher
than the exact match accuracy when different se-
mantic programs yield the same denotation.

When we evaluated our approach using the
same executor as the baselines of Herzig and Be-
rant (2021), we observed two main issues regard-
ing the behaviour of several predicates: (1) Sev-
eral predicates have undefined behaviours (e.g.
population_1 and traverse_2 in the case
of an argument of type country), in the sense
that they are not implemented; (2) The behaviour
of some predicates are incorrect with respect to
their expected semantic (e.g. traverse_1 and
traverse_2). These two sources of errors re-
sult in incorrect denotation for several semantic
programs, leading to an overestimation of the deno-
tation accuracy when both the gold and predicted
programs return by accident an empty denotation
(potentially for different reasons, due to aforemen-
tioned implementation issues).

We implemented a corrected executor addressing
the issues that we found.
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