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Gaussian Mixture Model
Random variables
▶ Y taking values in {1...k} — represents the choice of one (latent) cluster in k
▶ X taking values in Rd — represents the observed point

Generative story
1. y ∼ pθ(Y)
2. x ∼ pθ(X |Y = y)

=> locally normalized models

Parameterization: θ = {λ, µ, σ2}
▶ Prior distribution: λ ∈ △(k), i.e. pθ(Y = y) = λy .
▶ Conditional distribution: µ ∈ Rk×d and σ2 ∈ Rk×d

++ ,
i.e. pθ(x|y) = ∏j

i=1 pθ(xi |y) = ∏j
i=1 f (xi , µy ,i , σ2

y ,i),
where f is the PDF of univariate Gaussian distributions.



Gradient-based learning
Let D = {x}n

i=1 be a training dataset of n datapoints.
Training objective
Maximize the log-likelihood of the training data (the evidence of the data)

arg max
θ∈Θ

∑
x∈D

log pθ(x) = arg min
θ∈Θ

−
∑
x∈D

log pθ(x) = arg min
θ∈Θ

−
∑
x∈D

log
∑

y
pθ(y)pθ(x|y)︸ ︷︷ ︸

marginalization over
latent variables

where θ is the set of all parameters the GMM and Θ the set of well-defined θ.

Training algorithm
▶ We can reparameterize the parameters so they are unconstrained
▶ We can simply use gradient descent on the objective with reparameterized

variables! :)



Expectation-Maximization algorithm

Why another algorithm?
Gradient descent:
▶ Pros: trivial implementation via Pytorch
▶ Cons: you need to define a stepsize

Expectation-Maximization:
▶ Pros: no stepsize!
▶ Cons: you have to write the optimization code yourself

(there are other favors for EM, but outside the scope of this course)

Intuition of EM
▶ Derive a parameterized lower bound to maximization objective
▶ Interleave maximization of the lower bound parameters and the model parameters



EM objective
Evidence lower bound (ELBO)

logEp(Y)[p(x|Y)] ≥ Eq(Y)[log p(Y)p(x|Y)] + H[q(Y)]

where q is a proposal distribution and H the Shannon entropy.

Proposal distribution for GMMs

qϕ(Y = y |X = x) = ϕ(x)
y

where ϕ(x) ∈ △(k) for each x in the training set.
New objective

max
θ∈Θ

∑
x∈D

log
∑

y
pθ(y)pθ(x|y)

≥ max
θ∈Θ,ϕ∈Φ

∑
x∈D

Eqϕ(Y|x)[log pθ(y)pθ(x|y)] + H[qϕ(Y|x)]
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The two steps of EM
EM objective

max
θ∈Θ,ϕ∈Φ

∑
x∈D

Eqϕ(Y|x)[log pθ(y)pθ(x|y)] + H[qϕ(Y|x)]

= max
θ∈Θ,ϕ∈Φ

∑
x∈D

Elbo(x, θ, ϕ)

EM algorithm
Compute a sequence of parameters ϕ(1), θ(1), ϕ(2), θ(2), ϕ(3), θ(3)... as follows:
▶ E step: ϕ(t+1) = arg maxϕ∈Φ

∑n
i=1 Elbo(x, θ(t), ϕ)

▶ M step: θ(t+1) = arg maxθ∈Θ
∑n

i=1 Elbo(x, θ, ϕ(t+1))

Comments:
▶ the new parameters ϕ computed in the E step are immediately used for the M step
▶ this is just a block coordinate ascent algorithm



Expectation step 1/4

ϕ(t+1) = arg max
ϕ∈Φ

∑
x∈D

Elbo(x, θ(t), ϕ(t))

Parameter decomposition
The parameters of the proposal distribution decomposes over training examples, so we
can compute each one independently:

ϕ(t+1)(x) = arg max
ϕ∈△(k)

Elbo(x, θ(t), ϕ)

Intuition
For a given set of parameters θ, the E step computes the best proposal distribution
possible (i.e. so the bound is the best possible bound)



Expectation step 2/4

KL divergence

DKL[q(Y)|p(Y)] =
∑

y
q(y) log q(y)

p(y)
▶ non-negative, i.e. DKL[q(Y)|p(Y)] ≥ 0
▶ non-necessarily symmetric, i.e. DKL[q(Y)|p(Y)] ̸= DKL[p(Y)|q(Y)]
▶ null iff the two distributions are equal: DKL[q(Y)|p(Y)] = 0 ⇐⇒ q(y) = p(y), ∀y



Expectation step 3/4

Evidence lower bound (ELBO)
logEp(Y)[p(x|Y)] ≥ Eq(Y)[log p(Y)p(x|Y)] + H[q(Y)]

where q is a proposal distribution and H the Shannon entropy.

ELBO gap

logEp(Y)[p(x|Y)] − Eq(Y)[log p(Y)p(x|Y)] + H[q(Y)] = DKL[q(Y)|p(Y|x)]

where DKL is the Kullback-Leibler divergence.



Expectation step 4/4

ϕ(t+1)(x) = arg max
ϕ∈△(k)

Elbo(x, θ(t), ϕ)

How to solve the E step?
By the ELBO gap, we know that the objective is maximized if the proposal distribution
is equal to the posterior distribution!

q(y |x) = p(y |x) = p(y)p(x|y)∑
y ′ p(y ′)p(x|y ′)

=> very easy to compute the optimal parameters ϕ in the E step



Maximization step

θ(t+1) = arg max
θ∈Θ

∑
x∈D

Elbo(x, θ, ϕ(t+1))

How to solve the M step?
Ignore the constraints on the variance parameters, and simply compute the closed form
expression using first order optimality methods!
Solution: looks like "weighted" means and variances.



Exercises

1. Compute the ELBO gap
2. Derive the E step solution using KKT conditions instead of the ELBO gap

— is the result expected?
3. Compute the closed form solution for the M step

(for the E step it’s too trivial)



Sigmoid belief network (two layers only)

Random variables
▶ Y taking values in [0, 1]k (latent)
▶ X taking values in [0, 1]d (observed)

Parameterization θ = {a, B, c}

pθ(x, y) = pθ(y)pθ(x|y) =
k∏

i=1
pθ(yi)

d∏
i=1

pθ(xi |y) =
k∏

i=1

exp(yiai)
1 + exp(ai)

d∏
i=1

exp(xi(Biy + ci)
1 + exp(Biy + ci)

where a ∈ Rk , B ∈ Rd×k and c ∈ Rd .

Generative story
1. y ∼ pθ(Y)
2. x ∼ pθ(X |Y = y)

=> sampling from independant Bernoullis



SBN training

Can we directly use gradient ascent to?
Evidence of a training datapoint x ∈ D:

log pθ(x) = log
∑

y
pθ(y)pθ(x|y)

=> sum over 2k values for y , intractable!!!
We can’t even compute the objective, not even mentioning the gradient

Can we apply EM?
▶ The proposal distribution qϕ(y |x) would require 2k parameters per training point
▶ The E step closed-form expression requires summing over 2k values

(denominator in Bayes rule)
=> intractable again :(
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Mean Field Theory (MFT)

Mean Field assumption
Assume independence between dimension of latent space in the proposal distribution:

qϕ(z|x) =
k∏

i=1
(ϕ(x)

i )zi (1 − ϕ(x))1−zi
i

where ϕ(x) ∈ [0, 1]k are the parameters of the proposal distribution associated with
observation x.

What does it changes?
▶ Cons: (probably) not possible to have a tight ELBO anymore (gap = 0)
▶ Pros: can make computation tractable



ELBO for SBNs
log pθ(x) = log

∑
y∈Y

pθ(y)pθ(x|y)

≥ Eqϕ(Y|x)[log pθ(Y)]︸ ︷︷ ︸
(a)

+Eqϕ(Y|x)[log pθ(x|Y)]︸ ︷︷ ︸
(b)

+ HS[qϕ(Y|x)]︸ ︷︷ ︸
(c)

≥ ⟨a, ϕ(x)⟩ −
k∑

i=1
log(1 + exp(ai))︸ ︷︷ ︸

(a)

⟨x, Bϕ(x)⟩ + ⟨x, c⟩ −
d∑

i=1
log

1 + exp(ci)
k∏

j=1

(
1 − ϕ

(x)
j + ϕ

(x)
j exp(Bi ,j)

)
︸ ︷︷ ︸

lower bound on (b)
k∑

i=1

(
ϕ

(x)
i log ϕ

(x)
i + (1 − ϕ

(x)
i ) log(1 − ϕ

(x)
i )

)
︸ ︷︷ ︸

(c)
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Mean Field EM for SBN

Algorithm
▶ E step: maximize the Elbo:

1. write down the first-order optimality condition for ϕ
2. solve the resulting problem with iterative equation solving method

▶ M step: one step of gradient ascent on the Elbo wrt model parameters θ

¨
Difference with GMMs
▶ Cannot use the Elbo gap and Bayes rule in EM
▶ No closed-form expression for step E or M



Upper bound on the evidence
Question
As we cannot close the Elbo gap in the E step,
how to evaluate the quality of the resulting bound?

Variational formulation of the sigmoid
σ(u) = inf

ϵ∈[0,1]
exp(ϵu − HFD[ϵ])

where HFD[ϵ] = −ϵ log ϵ − (1 − ϵ) log(1 − ϵ) is the Fermi-Dirac entropy.

Upper bound
For any ϵ ∈ [0, 1]d :

log pθ(x) ≤
(

−
∑d

i=1 HFD[ϵ1] +∑d
i=1 ϵici(2xi − 1)

+∑k
j=1

(
1 − σ(ai) + σ(ai) exp(∑d

i=1 ϵiBi ,j(2xi − 1))
) )

(not trivial to find the best variational parameters for this bound!)
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