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Gaussian Mixture Model

Random variables
» ) taking values in {1...k} — represents the choice of one (latent) cluster in k

> X taking values in RY — represents the observed point

Generative story

Loy ~py(d)
2. x ~ pg(X|Y =y)
=> |ocally normalized models

Parameterization: 0 = {\, u, 02}

» Prior distribution: A € A(k), Qe pg(Y =y)=A\,.

» Conditional distribution: g € R¥*9 and o2 € RK*%,
i.e. po(xly) = Tl=y po(xily) = [Tiey F (i, iy is 03 ),
where f is the PDF of univariate Gaussian distributions.



Gradient-based learning

Let D = {x}7_; be a training dataset of n datapoints.
Training objective
Maximize the log-likelihood of the training data (the evidence of the data)

arg max Z log pg(x) = arg min Z log pg(x) = arg mln Z IogZpg (y)po(xly)
0€©  xep xeD x€D

marginalization over
latent variables

where 0 is the set of all parameters the GMM and © the set of well-defined 6.

Training algorithm
> We can reparameterize the parameters so they are unconstrained

» We can simply use gradient descent on the objective with reparameterized
variables! :)



Expectation-Maximization algorithm

Why another algorithm?
Gradient descent:

» Pros: trivial implementation via Pytorch

» Cons: you need to define a stepsize
Expectation-Maximization:

» Pros: no stepsize!

» Cons: you have to write the optimization code yourself

(there are other favors for EM, but outside the scope of this course)

Intuition of EM
» Derive a parameterized lower bound to maximization objective

» Interleave maximization of the lower bound parameters and the model parameters



EM objective
Evidence lower bound (ELBO)
log By [P(xIV)] = Eq(y)[log p(¥)p(x|V)] + H[q(V)]

where g is a proposal distribution and H the Shannon entropy.



EM objective
Evidence lower bound (ELBO)
log Ey()[p(xIV)] = Egy)llog p(V)p(x|V)] + H[q(V)]
where g is a proposal distribution and H the Shannon entropy.

Proposal distribution for GMMs

qd)(y = y|X = x) = §/X)
where ¢(*) € A(k) for each x in the training set.

New objective

max ZlogZPe )Po(x]y)

x€D

> max );)E%(y\x)[logpe(y)pe(XIy)]+H[%O’IX)]



The two steps of EM
EM objective

002X, XEZDE%(J;\X)['O&’; Po(y)po(x]y)] + Hlge(V|x)]

= max ELBO(x, 0,
e, X Pl

EM algorithm

Compute a sequence of parameters ¢, 0(1) (2 92 »B3) 9(3) . as follows:
> Estep: ¢(t™D) = arg MaX,eep i1 BLBO(X, 6 ¢)
> M step: (") = argmaxpee 37y ELBO(x, 6, (1))

Comments:

» the new parameters ¢ computed in the E step are immediately used for the M step
» this is just a block coordinate ascent algorithm



Expectation step 1/4

ot = arg max Z ELBO(x, (1), qﬁ(t))
PEP xeD

Parameter decomposition
The parameters of the proposal distribution decomposes over training examples, so we
can compute each one independently:

gb(tH)(x) = argmax ELBO(x, (1), ®)
pe(K)

Intuition
For a given set of parameters 6, the E step computes the best proposal distribution
possible (i.e. so the bound is the best possible bound)



Expectation step 2/4

KL divergence
(v)

y)

Dxrlq(Y ]—Zq

» non-negative, i.e. Dxr[q())|p(V)] >0
> non-necessarily symmetric, i.e. Dx1[q(Y)|p(Y)] # DxrLlp(V)|a(V)]
» null iff the two distributions are equal: Dkr[q())|p(Y)] =0 <= q(y) = p(y),Vy



Expectation step 3/4

Evidence lower bound (ELBO)
log Ep(y)[p(x| V)] = Eqq)llog p(V)p(x|Y)] + Ha(V)]

where g is a proposal distribution and H the Shannon entropy.

ELBO gap

log Ep3) [P(x|V)] = Eqa)llog p(V)p(x| V)] + H[a(V)] = Dku[a(Y)|p(Y]x)]

where Dkj, is the Kullback-Leibler divergence.



Expectation step 4/4

gb(H'l)(x) = argmax ELBO(x, (1), o)
pei(k)

How to solve the E step?

By the ELBO gap, we know that the objective is maximized if the proposal distribution
is equal to the posterior distribution!

p(y)p(x]y)
>y p(y)p(x]y’)

=> very easy to compute the optimal parameters ¢ in the E step

q(y|x) = p(y|x) =



Maximization step

0t = argmax > ELBO(x, 0, ¢("Y)
0cO x€D

How to solve the M step?

Ignore the constraints on the variance parameters, and simply compute the closed form
expression using first order optimality methods!

Solution: looks like "weighted" means and variances.



Exercises

1. Compute the ELBO gap

2. Derive the E step solution using KKT conditions instead of the ELBO gap
— is the result expected?

3. Compute the closed form solution for the M step
(for the E step it's too trivial)



Sigmoid belief network (two layers only)

Random variables
> ) taking values in [0, 1] (latent)
> X taking values in [0,1]9 (observed)

Parameterization 0 = {a, B c}

po(x,y) = po(y)po(xly) = HPe Yi H (xily) =

ﬁ exp(yiaj) H exp(xi(Bjy + ¢i)
1 1+exp a,) 1 1+exp (Biy + ci)

where a € R¥, B € RY*k and ¢ € RY.

Generative story

Ly~ ps(Y)
2. x~pg(X|Y =y)
=> sampling from independant Bernoullis



SBN training

Can we directly use gradient ascent to?
Evidence of a training datapoint x € D:

log ps(x) = log Y _ po(y)pa(x|y)

=> sum over 2¥ values for y, intractable!!!
We can’t even compute the objective, not even mentioning the gradient



SBN training

Can we directly use gradient ascent to?
Evidence of a training datapoint x € D:

log pg(x) = log Z po(y)pe(x|y)

=> sum over 2¥ values for y, intractable!!!
We can’t even compute the objective, not even mentioning the gradient

Can we apply EM?

> The proposal distribution g, (y|x) would require 2% parameters per training point

» The E step closed-form expression requires summing over 2X values
(denominator in Bayes rule)

=> intractable again :(



Mean Field Theory (MFT)

Mean Field assumption
Assume independence between dimension of latent space in the proposal distribution:

as(z/x) = HW (1= o)

where ¢®) € [0,1]% are the parameters of the proposal distribution associated with
observation x.
What does it changes?

» Cons: (probably) not possible to have a tight ELBO anymore (gap = 0)

> Pros: can make computation tractable



ELBO for SBNs

log py(x) = log > _ pa(y)po(xy)
yey

> Eq, vjx) (108 po(I)] + Eq, (y)x) [log po(x| V)] + Ho[q4(V|x)]
(c)
(a) (b) c
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ELBO for SBNs
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i=1 j=1

lower bound on (b)

k
3 (¢§*) log &) + (1 — ¢) log(1 — ¢§*)))

i=1

(c)



Mean Field EM for SBN

Algorithm

» E step: maximize the ELBO:

1. write down the first-order optimality condition for ¢
2. solve the resulting problem with iterative equation solving method

» M step: one step of gradient ascent on the ELBO wrt model parameters 6

Difference with GMMs
» Cannot use the ELBO gap and Bayes rule in EM

» No closed-form expression for step E or M



Upper bound on the evidence

Question

As we cannot close the Elbo gap in the E step,
how to evaluate the quality of the resulting bound?



Upper bound on the evidence

Question

As we cannot close the Elbo gap in the E step,
how to evaluate the quality of the resulting bound?

Variational formulation of the sigmoid
o(u) = |nf1] exp(eu — H*P[e])

where H"P[e] = —eloge — (1 — €)log(1 — €) is the Fermi-Dirac entropy.

Upper bound
For any € € [0, 1]¢:

| — Y H P[] + 3L eici(2x; — 1)
og p0( ) ( -|-ZJ 1 ( a(a,-) —+ U(a,-)exp(z}f:l 6,'B,'7J'(2X,' — 1))) )

(not trivial to find the best variational parameters for this bound!)



