

TOWARDS MULTILINGUAL PARSING

Caio Corro

NATURAL LANGUAGE PROCESSING

▶ ...

Applications

- ► Machine Translation
- Information Retrieval
- Sentiment Analysis
- ► Automatic Summarization
- ► Human-Computer Interaction

Data type

- Structured: language is sequential
- Discrete: text processing
- Continuous: speech processing

Difficulties

- ► Many languages (> 6000)
- ► Ambiguity

How to build systems that works for many languages?

- Constantly evolving
- ► Noisy

TASK EXAMPLES 1/2

Named entity recognition

- ► Input: sentence
- Output: chunks (person, location, group, creative work, product, corporation)

TASK EXAMPLES 1/2

Named entity recognition

- ► Input: sentence
- Output: chunks (person, location, group, creative work, product, corporation)

Nested named entity recognition

- ► Input: sentence
- Output: nested chunks

TASK EXAMPLES 2/2

Semantic parsing

- ► Input: sentence
- Output: formal representation
 (easier to manipulate by a software + (preferably) language agnostic)

SUPERVISED LEARNING

The lazy solution for rich people

- 1. Annotate a lot of data for your task
- 2. Train a big neural network
- 3. That's all!

Limitation

You need to re-annotate data

- ► For each task and
- ► For each language

(without even mentioning out-of-domain data, language varieties...)

Expensive and boring! \$\$\$\$

TOWARDS MULTILINGUAL PARSING (AND NLP)

Why should we care about syntax?

- Interesting field that relies on interesting formal systems (formal grammars, graph theory)
- Strong interaction between downstream tasks and syntax
 => can be used as a first step
- Expose structural differences between languages
 => could help us the build better neural architectures (explained later in the lecture)

Examples

If the syntactic structure of the sentence is known, maybe we can just use a rule based system for the downstream task?

DEEP LEARNING AND MULTILINGUAL NLP

THE BIG PICTURE

WORD EMBEDDINGS

Intuition

- Vector representation of words
- ► Given as input of a network
- Capture « features » about the word (Meaning? Syntactic features? Other? Who knows?!)

Pre-trained word embedding

- Unsupervised task
- ► Nowadays: context-sensitive pre-trained embeddings (i.e. ELMO, Bert)

Recurrent neural networks Inputs are fed sequentially State representation updated at each input

Sentence representation

Intuition

Use two RNNs with different trainable parameters

Intuition

Use two RNNs with different trainable parameters

Sentence representation

Intuition

Use two RNNs with different trainable parameters

Recurrent neural networks

- ► Inputs are fed sequentially

RECURRENT NEURAL NETWORKS

Recurrent neural networks

- ► Inputs are fed sequentially
- State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

Recurrent neural networks

- ► Inputs are fed sequentially
- State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

RECURRENT NEURAL NETWORKS

Recurrent neural networks

► Inputs are fed sequentially

Intuition

State representation updated at each input

- Look at other word using end-to-end trained attention instead of a given graph structure In practice we rely on « soft-selection » or attention instead of hard selection
- Combine several attention modules to attend to several words

- Look at other word using end-to-end trained attention instead of a given graph structure In practice we rely on « soft-selection » or attention instead of hard selection
- Combine several attention modules to attend to several words

Word order information

As such, each head is based on a bag-of-word model! How can take into account word order?

Word order information

As such, each head is based on a bag-of-word model! How can take into account word order?

Distance embedding

Concatenate (or sum) a distance embedding to the input

Word order information

As such, each head is based on a bag-of-word model! How can take into account word order?

Distance embedding

Concatenate (or sum) a distance embedding to the input

Trainable embeddings

- ► One embedding for each position in the sentence (1, 2, 3, 4...)
- Randomly initialized and trained end-to-end

But what if at test time we have a sentence longer than any sentence in the training set?!

Word order information

As such, each head is based on a bag-of-word model! How can take into account word order?

Distance embedding

Concatenate (or sum) a distance embedding to the input

Trainable embeddings

- ► One embedding for each position in the sentence (1, 2, 3, 4...)
- Randomly initialized and trained end-to-end

Fixed embeddings

But what if at test time we have a sentence longer than any sentence in the training set?!

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

TOWARD MULTILINGUAL ARCHITECTURES 2/2

Main idea

- ► Train one neural network and use it for several languages
- ► Hope it works: improve results in a multilingual settings + cross-lingual prediction

. . .

TOWARD MULTILINGUAL ARCHITECTURES 2/2

Limitations

► Word order is hard-coded in the architectures but differs in different languages

- ► RNN: « by nature »
- Self-attentive networks: via the positional embeddings
- ► Word embeddings are specific to a given language

MultiBERT

Just pre-train BERT on multilingual data and hope that it works

- Does it really work? And why?
- Does it work for languages where we have little data?

Why should we care about syntax?

- (Language agnostic?) intermediary step for a downstream task
- Tool to understand how to build better multi-lingual neural architectures

SYNTAX

SYNTAX 1/2

What is the syntactic analysis of a sentence?

- ► Exposes the (syntactic) role of each words
- Exposes of the relation between words in a sentence

Concepts that you must not confuse! [Rambow, 2010]

Syntactic content:

the morphological and syntactic facts of the analyzed sentence (Syntactic dependencies? (Lexicalized) constituents?)

Representation type:

what type of mathematical object is used to represent syntactic facts? (Graphs? Phrase structure trees?)

SYNTAX 2/2

On syntactic theories

- ► There are several syntactic theories
- Different theories are useful in different settings

The simple question that does not make sense

What is the part of speech (or syntactic category) of the word « **their** » in the following sentence?

« They focus on **their** own work. »

Answer: it depends on the syntactic theory!

- Penn Treebank style: Possessive pronoun
- Universal Dependencies style: Determiner

CONSTITUENT ANALYSIS

Definition [Brinton, 2000]

A constituent is a set of words defining a syntactic unit in a hierarchical syntactic structure. As such, it is a part of a sentence that can be moved, modified or deleted alongside agreement adjustments.

Example in the Penn Treebank style

S clauseNP Noun PhraseVP Verbal Phrase

Yield

The **yield** of a constituent is a set of words it dominates **Example:** The yield of the VP node is « walk the dog »

CONTINUOUS VS DISCONTINUOUS CONSTITUENT ANALYSIS 1/3

Continuous constituent tree

The yield of each constituent is a contiguous sequence of words

Discontinuous constituent tree

A constituent can yield a non-contiguous sequence of words

CONTINUOUS VS DISCONTINUOUS CONSTITUENT ANALYSIS 2/3

Original Penn Treebank annotation

+ traces to recover the movement origin

Discontinuous variant

Explicit representation of non-local dependencies in the constituency structure

[Evang and Kallmeyer, 2001]

CONTINUOUS VS DISCONTINUOUS CONSTITUENT ANALYSIS 3/3

Do we need to model discontinuous constituents?

- ► It is arguably « better » in English [McCawley, 1982 ; Bunt et al., 1987]
- ► It is very import in « free word order » languages like German [Müller, 2004]

21
DEPENDENCY ANALYSIS

Definition [Brinton, 2000]

- Head-modifier relationship: given two words, their relationship is qualified as head-modifier if the modifier word is optional modifier of the head
- Governor-complement relationship: given two words, their relationship is qualified as governor-complement if both words are mutually dependent: one cannot occur without the other (e.g. predicate-subject relationship)

Example

- « red » is a modifier of its head « car »
- « they » is a complement of its governor « owns »

Full example using Stanford Dependencies

« They own a red car »

DISCONTINUOUS CONSTITUENTS VS NON-PROJECTIVE DEPS

Projective dependency

- A dependency A->B is projective if all words between A and B are descendant of A
- ► Non-projective otherwise

The dependency representation depends on the syntactic theory

► If the root of the sentence is « do »:

➤ If the root of the sentence is « should »:

THE PARSING PROBLEM

Constituency/dependency parsing

Given a sentence, predict its constituency/dependency structure

Intuition of the neural approach

- 1. A neural network compute a score associated with each possible part
 - Constituency parsing: score every possible labeled constituent
 - Dependency parsing: score every possible labeled dependency
- Compute the coherent structure of maximum score where
 score of a structure = sum of the score of its parts

How? It depends...

Example for dependency parsing

Compute the arborescence of maximum score given the score of each possible arc

ARCHITECTURE OF A NEURAL PARSER

LINGUISTIC TYPOLOGY

LINGUISTIC TYPOLOGY

How to classify languages with respect to their features?

- Morphological features: how do morphemes combine to build words? Example: « hopelessness » contains 3 morphemes « hope », « less » and « ness »
- Syntactic features: how do words combine to build sentences? i.e. word order

Welcome to WALS Online

The World Atlas of Language Structures (WALS) is a large database of structural (phonological, grammatical, lexical) properties of languages gathered from descriptive materials (such as reference grammars) by a team of 55 authors.

https://wals.info/

MORPHOLOGICAL DIFFERENCES 1/2

Analytics or « morphologically poor » languages

Languages where morphology plays a (relatively) modest role: Yoruba, Vietnamese, English, ...

(1.2) Yoruba

Nwọn ómaa gbàpónùnméwălósòòsè.theyFUTPROG getpoundtenweekly'They will be getting £10 a week.'

(Rowlands 1969: 93)

(1.3) Vietnamese
 Hai dú.a bo? nhau là tại gia-đình thàng chông.
 two individual leave each.other be because.of family guy husband
 'They divorced because of his family.'

[Haspelmath and Sims, 2002]

(Nguyen 1997: 223)

Synthetic of « morphologically rich » languages

Languages where morphology plays a (relatively) important role: Sumerian, Swahili, Lezgian, ...

(1.4) Swahili

Ndovuwa-wiliwa-ki-song-anazi-umia-zoninyika.elephantsPL-two3PL-SUBORD-jostle-RECP3SG-hurt-REL isgrass'When two elephants jostle, what is hurt is the grass.'

(Ashton 1947: 114)

(1.5) Lezgian

Marf-adi wiči-n qalin st'al-ra-ldi qaw gata-zwa-j. rain-ERG self-GEN dense drop-PL-INS roof hit-IMPF-PST 'The rain was hitting the roof with its dense drops.' (Haspelmath 1993: 140)

Language	Ratio of morpho per word	emes
West Greenlandic	3.72	Morphology plays a rolativoly
Sanskrit	2.59	incomplicity plays a relatively
Swahili	2.55	Important role
Old English	2.12	
Lezgian	1.93	
German	1.92	
Modern English	1.68	Morphology plays a relatively
Vietnamese	1.06	modest role

Table 1.1 The degree of synthesis of some languages

Source: based on Greenberg (1959), except for Lezgian

MORPHOLOGICAL DIFFERENCES 2/3

« Tu dormiras demain. » « You will sleep tomorrow. »

Feature 67A: The Future Tense	Valu	es	
3 上▼ This feature is described in the text of chapter 67 The Future Tenner, by Östen Dahl and Viveka Velupillai cite	•	Inflectional future exists	110
You may combine this feature with another one. Start typing the feature name or number in the field below.	0	No inflectional future	112
× 67A: The Future Tense Submit			

MORPHOLOGICAL DIFFERENCES 2/3

Negative particle in French

« Je **n'**ai **pas** mangé de pomme »

Negative auxiliary verb in Finnish

« **En** syönyt omenaa »

Inflection for person and number

Feature 112A: Negative Morphemes

3 ±-		_	
This feature is described in the text of chapter 1	12 Negative Morphemes	by Matthew S. Dryer	cite
You may combine this feature with another one.	Start typing the feature nam	ne or number in the field	d below.
× 112A: Negative			
Submit			

Indicative, conditional, and potential

Person	Singular	Plural
1.	en	emme
2.	et	ette
3.	ei	eivät

Imperative

Person	Singular	Plural
1.	-	älkäämme
2.	älä	älkää
3.	älköön	älkööt

https://en.wikipedia.org/wiki/Negative_verb#Finnish

Values

•	Negative affix	395
•	Negative particle	502
•	Negative auxiliary verb	47
\bigcirc	Negative word, unclear if verb or particle	73
	Variation between negative word and affix	21
•	Double negation	119

SYNTACTIC DIFFERENCES 1/3

Feature 81A: Order of Subject, Object and Verb

This feature is described in the text of chapter 81 Order of Subject, Object and Verb by Matthew S. Dryer cite

You may combine this feature with another one. Start typing the feature name or number in the field below.

× 81A: Order of Subject,	
Object and Verb	Submit

Values		
•	SOV	564
•	SVO	488
•	VSO	95
\diamond	VOS	25
•	OVS	11
•	OSV	4
•	No dominant order	189

SYNTACTIC DIFFERENCES 2/3

Warning

WALS document the « dominant » word order, variations may exists!

« La petite maison rouge »

Values

Feature 87A: Order of Adjective and Noun

SYNTACTIC DIFFERENCES 3/3

Feature 81A: Order of Subject, Object and Verb

This feature is described in the text of chapter 81 Order of Subject, Object and Verb by Matthew S. Dryer cite

You may combine this feature with another one. Start typing the feature name or number in the field below.

× 81A: Order of Subject,	
Object and Verb	Submit

Values	;	
•	SOV	564
•	SVO	488
•	VSO	95
♦	VOS	25
•	OVS	11
•	OSV	4
•	No dominant order	189

MORPHOLOGY VS SYNTAX

STRUCTURAL DIFFERENCES

Intuition

It's not only about word order, certain types of structures are not shared across languages

Example: cross-serial dependencies [Kallmeyer, 2010]

UNIVERSAL DEPENDENCIES

THE UNIVERSAL DEPENDENCY PROJECT

Universal Dependencies

- Annotation scheme to build cross-linguistically consistent treebank
- ► Over 100 languages and 200 treebanks
- ► Over 300 contributors
- ➤ Include code-switching treebanks (i.e. sentences that mix several languages)

What can we do with that?

- Multilingual parsing (train and parse several languages with the same network)
- Cross-lingual parsing (train on one or several languages and evaluate on other languages)
- Research from a language typology perspective

https://universaldependencies.org/

Figure 5: Code-switching tweet showing grammatical fragments from Hindi and English.

[Bhat et al., 2018]

ONE BENEFIT OF DEPENDENCIES 1/2

Algorithmic complexity

What is the complexity of the prediction step?

- Depends on the structure: constituency or dependency parsing?
- > Depends on the search space: continuous? discontinuous? What kind of discontinuity?

ONE BENEFIT OF DEPENDENCIES? 2/2

Intuition

Increasing

search space

Increasing

We want the larger search space possible in order to be able to parse a maximum of linguistic phenomena (e.g. cross-serial dependencies)

Constituency parsing complexity (among many other algorithms!)

CG	Context-free:	$\mathcal{O}(n^3)$	[Sakai, 1961]
spa	Well-nested + 2-bounded block degree:	$\mathcal{O}(n^6)$	[Joshi, 1987]
arch	(Tree adjoining grammars, LCFRS)		
Se Se	Joint tagging and parsing:	NP-hard	[Corro et al., 2017]

Dependency parsing complexity (among many other algorithms!)

Ľ.	Projective:	$\mathcal{O}(n^3)$	[Eisner, 2000]
L	Well-nested + 2-bounded block degree:	$\mathcal{O}(n^7)$	[Gómez-Rodríguez
L	Well-nested + k-bounded block degree, $k > 2$:	$\mathcal{O}(n^{5+2(k-1)})$	et al. 2009]
L	k-bounded block degree, $k > 2$:	NP-complete	[Satta, 1992]
	Non-projective:	$\mathcal{O}(n^2)$	McDonald et al., 2005]

UNIVERSAL PART-OF-SPEECH TAGS [Petrov et al., 2012; Nivre et al. 2016]

17 categories that exist in most languages (whatever this means)

Open class words			Closed class words	Other		
ADJ ADV INTJ NOUN PROPN VERB	adjective adverb interjection noun proper noun verb	ADP AUX CONJ DET NUM PART PRON SCONJ	preposition/postposition auxiliary coordinating conjunction determiner numeral particle pronoun subordinating conjunction	PUNCT SYM X	punctuation symbol unspecified POS	

Basic unit is syntactic words

Clitics are split off

(Clitics = syntactically independent but phonologically dependent morphems)

► Contractions are undone

Example in Spanish (give me it) Example in French

« dámelo » => « dá me lo » « au » => « à le »

48	actes	acte	NOUN	_	Gender=	MasclNumb	er=Plur	46	obj	_	_					
49	inutile	5	inutile	ADJ	_	Gender=	lasc Numi	ber=Plur	48	amod	_	_				
50	et	et	CCONJ	_	_	53	cc	_	_							
51-52	au	_	-	_	_	_	_	_	_							
51	à	à	ADP	_	_	53	case	_	_							
52	le	le	DET	_	Definit	e=DeflGer	nder=Mas	clNumber⊧	=Sing Pro	onType=A	rt	53	det	_	_	41
53	dépasser	nent	dépasser	nent	NOUN	_	Gender=	MasclNum	per=Sing	44	conj	_	_			

EXAMPLE OF TAGSET CONVERSION TABLE

Tagset en::penn, total 48 tags.

#	=>	SYM	_	#
\$	=>	SYM	_	\$, C\$, US\$, A\$, HK\$
"	=>	PUNCT	PunctSide=Fin PunctType=Quot	", '
,	=>	PUNCT	PunctType=Comm	,, 2, an
-LRB-	=>	PUNCT	PunctSide=Ini PunctType=Brck	
-RRB-	=>	PUNCT	PunctSide=Fin PunctType=Brck	
	=>	PUNCT	PunctType=Peri	., ?, !
:	=>	PUNCT	-	, :, ;,, -
AFX	=>	ADJ	Hyph=Yes	
CC	=>	CCONJ	-	and, or, but, &, nor
CD	=>	NUM	NumType=Card	million, billion, one, two, three
DT	=>	DET	-	<i>the, a, an, this, some</i>
EX	=>	PRON	AdvType=Ex	there
FW	=>	Х	Foreign=Yes	de, perestroika, glasnost, vs., naczelnik
HYPH	=>	PUNCT	PunctType=Dash	
IN	=>	ADP		of, in, for, on, that
JJ	=>	ADJ	Degree=Pos	new, other, last, such, first
JJR	=>	ADJ	Degree=Cmp	more, higher, lower, less, better
IJS	=>	ADJ	Degree=Sup	most, least, largest, latest, best
LS	=>	х	NumType=Ord	3, 2, 1, 4, First
MD	=>	VERB	VerbType=Mod	will, would, could, can, may

https://universaldependencies.org/tagset-conversion/

SYNTACTIC STRUCTURE CONVERSION

Definitions

- Content word: Words that mainly contribute to the meaning
- ► Function word:

Words that mainly express grammatical relationships (no or almost no meaning)

Intuition

- Function words in one language is « often » correspond to morphological inflection in another language
- To increase to probability of parallel structures, make content words simple « modifiers »

Example of function words annotation in different treebanks (not UD) [Nivre at al., 2016]

CONTENT WORD AS HEAD WORD

- Using content word as the principle head/governors is unusual in syntactic theories
- This representation is very close to nucleus-based dependency structures where function words are merged with content words [Tesnière, 1959]

Figure 2: Nucleus-based dependency trees for equivalent sentences from English (top) and Finnish (bottom).

[Basirat and Nivre, 2021]

TOWARDS NEURAL ARCHITECTURE FOR MULTILINGUAL NLP

WORD EMBEDDINGS 1/2

Intuition

- 1. Pre-train language dependent word embeddings
- 2. Align the embeddings so all languages are in the same space

WORD EMBEDDINGS 1/2

Does it make sense?

Can we really align embeddings of a morphologically rich language with the ones of a morphologically poor language?

2 words

(1.6) West Greenlandic Paasi-nngil-luinnar-para

Paasi-nngil-luinnar-para ilaa-juma-sutit. understand-not-completely-1SG.SBJ.3SG.OBJ.IND come-want-2SG.PTCP 'I didn't understand at all that you wanted to come along.' (Fortescue 1984: 36)

CONTEXTUAL REPRESENTATIONS

IDEA 1: COMPUTE REPRESENTATIONS OVER DEPENDENCIES

Intuition

- Let's assume aligned word embeddings make sense
- Instead of considering the sequential word order in the neural architecture, consider the universal dependency relations!

Problem

In a real scenario we don't have the dependency structure!

- ► We need to predict them
- ► To predict them we need to construct context-sensitive representations
- => so we go back to the same problem...

GRAPH NEURAL NETWORKS (GCN)

Intuition

- Vector representations of nodes (embeddings)
- ► (Parameterized) message passing on arcs

[Kipf et Welling, 2016; Marcheggiani et Titov 2017]

IDEA 2: PERMUTATION EQUIVARIANT ARCHITECTURES?

Rotation equivariance vs. rotation invariance in computer vision

Exemple in NLP: bag-of-words model are invariant to word order permutation

A Neural Network is X equivariant if

- ► If the input is transformed by **X**
- ► Then the output is similarly transformed by **X**

EQUIVARIANT CONVOLUTIONS IN COMPUTER VISION

Translation equivariant convolution

Preserves the « translation structure »

- ► If the input is transposed
- ► The output is also transposed
- + pooling will make the model invariant

EQUIVARIANT CONVOLUTIONS IN COMPUTER VISION

Translation equivariant convolution

Preserves the « translation structure »

- ► If the input is transposed
- ► The output is also transposed
- + pooling will make the model invariant

Rotation equivariant convolution

Preserves the « rotation structure »

- ► If the input is rotated
- ► The output is also rotated

Standard convolution <u>is not</u> rotation equivariant

GROUP CONVOLUTIONS

[Cohen and Weiling, 2016]

Figure 1. A p4 feature map and its rotation by r.

Figure 2. A p4m feature map and its rotation by r.

IDEA 2: PERMUTATION EQUIVARIANT ARCHITECTURES?

Amazing!

If the network is permutation equivariant, then we could score the dependencies and predict the same dependency structure for these three inputs! :)

red

IDEA 2: PERMUTATION EQUIVARIANT ARCHITECTURES?

This is bad idea in general! :(

- > We want to be permutation equivariant only for specific syntactic relations
- So we need to know the dependency structure to do that...

Example

By swapping « the dog » and the « the cat », we changed their grammatical role (subject vs. object), so we also want to change their output representations! :(

EXPERIMENTAL WORK IN THIS DIRECTION 1/2 [ahmad et al., 2019]

Transformer with relative position representations [Shaw et al., 2018]

No distance embeddings
If only this => bag-of-word model

Add direction agnostic distance information in heads

Lang	Dist to	SelfAtt-Graph	RNN-Graph
	English	(OF OF)	(OS OF)
	English	(01-01)	(03-01)
en	0.00	90.35/88.40	90.44/88.31
no	0.06	80.80/72.81	80.67/72.83
sv	0.07	80.98/73.17	81.23/73.49
fr	0.09	77.87/72.78	78.35 [†] /73.46 [†]
pt	0.09	76.61 [†] /67.75	76.46/ 67.98
da	0.10	76.64/67.87	77.36/68.81
es	0.12	74.49/66.44	74.92 [†] /66.91 [†]
it	0.12	80.80/75.82	81.10/76.23 [†]
hr	0.13	61.91 [†] /52.86 [†]	60.09/50.67
ca	0.13	73.83/65.13	74.24 [†] /65.57 [†]
pl	0.13	74.56 [†] /62.23 [†]	71.89/58.59
uk	0.13	60.05/52.28 [†]	58.49/51.14
sl	0.13	68.21 [†] /56.54 [†]	66.27/54.57
nl	0.14	68.55/60.26	67.88/60.11
bg	0.14	79.40 [†] /68.21 [†]	78.05/66.68
ru	0.14	60.63/51.63	59.99/50.81
de	0.14	71.34 [†] /61.62 [†]	69.49/59.31
he	0.14	55.29/48.00 [†]	54.55/46.93
cs	0.14	63.10 [†] /53.80 [†]	61.88/52.80
ro	0.15	65.05 [†] /54.10 [†]	63.23/52.11
sk	0.17	66.65/58.15 [†]	65.41/56.98

IDEA 3: TYPOLOGICAL INFORMATION AS FEATURES 1/2

Intuition

Instead of build a « smart architecture », we give to the network features representing the typological information of the input language

- ► Train on many languages and hope it learns to be « equivariant in the good way »
- ► At test time, we could give input in an unknown language as long as it exists in WALS :)

IDEA 3: TYPOLOGICAL INFORMATION AS FEATURES 2/2

[Scholivet et al., 2019]

- Multilingual settings
- ► No cross-lingual experiments :(
- L: Monolingual corpus.
- Σ : Multilingual corpus.
- Σ ID: Multilingual corpus + language ID.
- ΣW_N , ΣW_{80} : Multilingual corpus + WALS.

L	Σ	Σ ID	ΣW_N	ΣW_{80}	Lang.
65.89	60.59	62.97	63.15	64.38	ar
78.59	74.32	76.43	76.26	77.47	bg <mark>S</mark>
77.18	72.76	74.11	73.03	76.27	ca R
68.92	68.01	68.91	68.72	69.61	cs S
73.62	67.38	70.25	70.19	70.25	da G
71.07	63.76	66.47	69.18	69.22	de G
77.11	71.26	72.72	73.29	75.84	el
70.05	66.02	69.3	69.91	70.19	en G
71.47	71.98	72.38	72.29	73.22	es R
66.98	63.76	66.89	65.75	67.79	et
63.26	55.76	59.54	60.22	59.39	eu
72.85	66.02	67.23	69.63	70	fa
60.97	56.29	58.86	57.37	59.28	fi
75.74	74.25	75.44	74.79	75.82	fr R
66.55	60.41	63.12	64.68	65.96	ga
70.21	63.03	65.69	66.09	67.45	he
78.91	73.86	75.81	75.77	74.45	hi
71.03	67.49	68.39	70	70.4	hr S
67.08	62.55	66.89	67.19	67.51	hu
68.64	58.38	63.99	62.61	64.57	id
81.44	76.45	78.03	76.97	79.83	it R

CONCLUSION

CONCLUSION

In brief

We have done **almost nothing** yet

- Aligned word embeddings don't even make sense
- Best we can do is pretrain BERT on big multilingual datasets

Exciting research coming in the future? Maybe by you? :-)

Most of the work is English-centric :/

The annotators were then tasked with producing language-specific annotation guidelines with the expressed goal of keeping the label and construction set as close as possible to the original English set, only adding labels for phenomena that do not exist in English. Making fine-grained label dis-

[McDonald et al., 2013]

I didn't cover many topics!

Transition-based parsers

we are scientists, we need to propose proper models for multilingal NLP

ahahaha MultiBERT go brrrrrr

