
INTRODUCTION À 
L'APPRENTISSAGE AUTOMATIQUE

Lecture 2 - Polytech 
Caio Corro

￼1

OUTLINE

1. Linear models

2. Loss functions

3. Regularization

4. Training algorithms

￼2

LINEAR REGRESSION

￼3

LINEAR REGRESSION

Setting

➤ Regression : we want to predict a scalar value (i.e. a real)

➤ Linear model : output must be a linear projection of input

x

y

Gold datapoints

￼4

LINEAR REGRESSION

Setting

➤ Regression : we want to predict a scalar value (i.e. a real)

➤ Linear model : output must be a linear projection of input

x

y
Best linear model that fits the data

￼4

LINEAR REGRESSION

Setting

➤ Regression : we want to predict a scalar value (i.e. a real)

➤ Linear model : output must be a linear projection of input

x

y
Best linear model that fits the data

The model makes errors!
￼4

LINEAR REGRESSION

￼5

= +
×

y a⊤ b

x

➤ Input:

➤ Parameters: avec

➤ Output:

x ∈ ℝd

θ = {a, b} a ∈ ℝd, b ∈ ℝ

y ∈ ℝ

Model

Simple linear projection of the input: fθ(x) = f(x; θ) = ⟨a, x⟩ + b

Prédiction Intercept (or bias) term

TRAINING
Training problem

Given a dataset , find the best possible set of parametersD = { (x(i), y(i)) }n

i=1
θ

￼6

TRAINING

Loss function

Function that is used to compare the prediction of a model with the expected gold output

ℓ : ℝ × ℝ → ℝ+

Gold output Model output

Loss value, non-negative

Properties of loss functions

➤ Non-negative

➤ The smaller the loss, the better the model

➤ Loss is null if and only if the model predicts the correct output

➤ Convex in the second argument (not always true)

￼7

TRAINING

Squared error loss function

ℓL2(y, w) =
1
2

∥y − w∥2
2 =

1
2

(y − w)2

Absolute error loss function

ℓL1(y, w) =
1
2

∥y − w∥1 = |y − w |

What is the difference?

➤ The squared error loss function is differentiable everywhere

➤ The absolute error loss function is non differentiable when y = w

➤ The absolute error loss function is less sensitive to outliers
￼8

TRAINING

Training problem

Given a dataset , find the best possible set of parameters

=> by minimizing a loss function over the dataset!

D = { (x(i), y(i)) }n
i=1

θ

θ* = argmin
θ

1
n ∑

(x,y)∈D

ℓ(y, fθ(x))

Example with the squared error loss

θ* = argmin
θ

1
n ∑

(x,y)∈D

1
2 (y − (⟨a, x⟩ + b))2

= argmin
θ

1
n ∑

(x,y)∈D

1
2 (y − ⟨a, x⟩ − b)2

￼9

REGULARIZATION

￼10

REGULARIZATION

The overfitting problem

When the input is of large dimension, the model may overfit (i.e. learn data by heart), 
which mean that the model will not be able to generalize correctly on unseen data.

Parameter regularization (sometimes called penalty term)

Penalize the parameters to keep them close to 0. 
Intuition => "use as less information as possible"

Main regularization terms:

➤ L2 regularization:

➤ L1 regularization:

r(u) =
1
2

∥u∥2
2

r(u) = ∑
i

|ui |

θ

￼11

REGULARIZATION

θ* = argmin
θ

1
n ∑

(x,y)∈D

ℓ(y, fθ(x)) + β × r(a)

Regularization weight, 
> 0

Warning

➤ Only regularize the projection parameters a

➤ It does not make sense to regularize the intercept term b 
(why would we want the prediction function to pass through the origin?)

￼12

GEOMETRIC INTUITION

L1 regularization L2 regularization

Difference between L1 and L2 regularization

➤ L2 norm is isotropic, it does not favor any direction

➤ L1 norm favors sparse vectors, that is vectors with (many) zeros

Illustrations: Optimization with Sparsity-Inducing Penalties (Bach et al.), The Elements of Statistical Learning (Hastie et al.)

x1x1

x2 x2x* x*

￼13

FEATURE SELECTION

L1 and regularization path

L1 regularization favors solutions with many zeros

➤ Features with a weight of 0 in a are not used by the model

➤ We can use L1 regularization to "sort" the features, find the one which are important

1. Start with a large β so no feature is selected

2. Gradually decrease β to see which features are used by the model

θ* = argmin
θ

1
n ∑

(x,y)∈D

ℓ(y, fθ(x)) + β × ∑
i

|ai |

￼14

TRAINING

￼15

(other slides)

￼16

TRICK FOR L1-REGULARIZATION

Issue of L1 regularization

➤ Non-differentiable in zero

➤ But sub-differentiable

Trick for non-differentiable function

➤ Rewrite the function as a maximum of differentiable functions 

 
 

➤ Use any convex combination of gradients of functions in the following set:

f(u) = max(f1(u), f2(u), f3(u), . . .)

F(u) = {fi | fi(u) = f(u)}

￼17

TRICK FOR L1-REGULARIZATION

Problem

This approach will not lead to sparse vector of parameters :(

Instead, there exists specialized optimization algorithms for L1 regularization :

➤ Proximal methods

➤ Coordinate descent

➤ ...

Easy trick

➤ If the sign of a parameter changed after update, set it to 0

➤ Use 0 as a partial derivative of the L1 norm for parameters equal to 0

ai

￼18

BINARY CLASSIFICATION

￼19

BINARY LINEAR CLASSIFIER: INTUITION

Points in one class

Points in the other
class

Hyperplane that separates
the two classes

￼20

Let and be two vectors.a ∈ ℝn x ∈ ℝn

DOT PRODUCT 1/2

a⊤x = ⟨a, x⟩ =
n

∑
i=1

ai × xi

a =

a1
a2. . .
an

x =

x1
x2. . .
xn

The dot product is defined as:

Transpose and 
matrix multiplication

Properties

➤ where is the magnitude of the vector:a⊤x = ∥a∥∥x∥ cos θ ∥a∥ =

n

∑
i=1

a2
i∥w∥

➤ if and only if vectors a and x are orthogonala⊤x = 0

￼21

DOT PRODUCT 2/2

a xx′￼

a

x
x′￼

a

x

x′￼

a⊤x = ∥a∥∥x∥ cos θ

∥a∥ ≥ 0

➤

➤

0 50 100 150 200 250 300 350
�1

�0.5

0

0.5

1

θ

cos(θ)

Positive dot product Negative dot product Null dot product

a⊤x > 0 a⊤x′￼> 0 a⊤x < 0 a⊤x′￼< 0 a⊤x = 0 a⊤x′￼= 0

￼22

BINARY CLASSIFICATION

￼23
= +

×

w a⊤ b

x

➤ Input:

➤ Parameters: avec

➤ Output: ou

x ∈ ℝd

θ = {a, b} a ∈ ℝd, b ∈ ℝ

y ∈ {0,1} y ∈ {−1,1}

Scoring function

Étant donné une entrée, calcul un score associé à la sortie

sθ(x) = s(x; θ) = ⟨a, x⟩ + b

Score associé à x

BINARY CLASSIFICATION

￼24

➤ Input:

➤ Parameters: avec

➤ Output: ou

x ∈ ℝd

θ = {a, b} a ∈ ℝd, b ∈ ℝ

y ∈ {0,1} y ∈ {−1,1}

Scoring function

Compute a score associated with an input (this function is parameterized)

sθ(x) = s(x; θ) = ⟨a, x⟩ + b

Prediction function

Compute the output associated with a score (this function is not parameterized)

ŷ(w) = {1 if w ≥ 0,
0 otherwise.

ŷ(w) = {1 if w ≥ 0,
−1 otherwise.

ou

BINARY CLASSIFICATION

￼25

➤ Input:

➤ Parameters: avec

➤ Output: ou

x ∈ ℝd

θ = {a, b} a ∈ ℝd, b ∈ ℝ

y ∈ {0,1} y ∈ {−1,1}

Full model

Sometimes we directly define the full model (scoring function + prediction function) 
Vocabulary issue: this is also called the prediction function

fθ(x) = {1 if ⟨a, x⟩ + b ≥ 0,
0 otherwise.

fθ(x) = {1 if ⟨a, x⟩ + b ≥ 0,
−1 otherwise.

ou

BINARY LINEAR CLASSIFIER: DEFINITION

Positive class

a

Negative class

Negative class

a

Positive class

￼26

BINARY CLASSIFICATION

Input space Score/weight/logit space Output space

x w y

ℝd ℝ {0,1} or {−1,1}

w = sθ(x) y = ̂y(w)

￼27

PERCEPTRON FOR BINARY CLASSIFICATION

In a nutshell

➤ Parameters:

➤ Decision boundary is the set of points that solves: 

➤ The decision boundary is an hyperplane

θ = {a, b}

fθ(x) = {
−1 if a⊤x + b ≤ 0,

1 if a⊤x + b > 0.

a⊤x + b = 0

Remaining questions

➤ Does an hyperplane that separates data always exists?

➤ How do we find this hyperplane, i.e. how do we compute a and b?

￼28

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼29

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼29

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼29

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼29

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼29

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼29

CONVEX SET

Definition

Let be a set of points. C is convex if and only if:C ∈ ℝn

∀x, y ∈ C, ϵ ∈ [0,1] : ϵ × x + (1 − ϵ) × y ∈ C
Or, in other words, for every couple of points in C, their convex combination must
also be in C.

(Picture from Convex Optimization, Boyd and Vandenberghe)

Convex set Non-convex set

￼30

CONVEX HULL

(Picture from Convex Optimization, Boyd and Vandenberghe)

Definition

The convex hull of a set is the set of all convex combinations of points in C:C ∈ ℝn

conv C = {ϵ1x1 + . . . + ϵkxk | ∀i = 1...k : xi ∈ C, ϵi ≥ 0,ϵ1 + . . . + ϵk = 1}

Or, in other words, it is the smallest convex set that contains S

￼31

SEPARATING HYPERPLANE
Theorem

Let and be two convex sets. 
If C and D does not intersect, i.e. then there exist a separating 
hyperplane such that:

C ∈ ℝn D ∈ ℝn

C ∩ D = ∅

∀x ∈ C : a⊤x + b ≥ 0
∀x ∈ D : a⊤x + b ≤ 0

where w and b parameterize the separation hyperplane.

(Picture from Convex Optimization, Boyd and Vandenberghe)
￼32

PARAMETER OF THE SEPARATING HYPERPLANE

C

Dx

y

Closed form solution

See Convex Optimization (Boyd and Vandenberghe) section 2.5.1.

￼33

PARAMETER OF THE SEPARATING HYPERPLANE

C

Dx

y

Closed form solution

See Convex Optimization (Boyd and Vandenberghe) section 2.5.1.

In practice

➤ Data is not linearly separable (i.e. such a hyperplane does not exists)

➤ Computing global solutions can be very expensive with big datasets

➤ Online algorithm are preferable ￼33

HOW TO SEPARATE THE DATA?

￼34

HOW TO SEPARATE THE DATA?

￼35

HOW TO SEPARATE THE DATA?

￼36

HOW TO SEPARATE THE DATA?

￼37

Non linear !

0-1 LOSS FUNCTION

Problem

How to compare the current prediction of the model with the gold output?

0-1 loss function

Function that is equal :

➤ to 0 if the model gives the correct prediction

➤ to 1 otherwise

ℓ0−1(y, w) = {0 if yw ≥ 0,
1 otherwise .

ℓ0−1(y, w) = {0 if (2y − 1)w ≥ 0,
1 otherwise .

If Y = {0,1} : If Y = {−1,1} :

Check if the score is of the
same sign as the gold output

Input the score!

￼38

0-1 LOSS FUNCTION

ℓ0,1(1,w) ℓ0,1(1,w)

ww

Problems

➤ Non convex function

➤ Derivative is null almost everywhere

￼39

SURROGATE LOSSES
Main idea

Replace the 0-1 loss by a surrogate such that the surrogate:

➤ is convex

➤ is an upper bound on the 0-1 loss

➤ has non null derivatives when the prediction is wrong

Minimizing the surrogate loss should "implicitly" minimize the 0-1 loss.
ℓ0,1(1,w)

w

￼40

HINGE LOSS

ℓ0,1(1,w)

w

ℓhinge(y, w) = max(0,1 − (2y − 1) × w) ℓhinge(y, w) = max(0,1 − y × w)

If Y = {0,1} : If Y = {−1,1} :

Requires the prediction is
correct with a "margin" of 1 ￼41

EXPONENTIAL LOSS

ℓexp(y, w) = exp(− (2y − 1) × w) ℓexp(y, w) = exp(−y × w)

If Y = {0,1} : If Y = {−1,1} :

ℓ0,1(1,w)

w

￼42

NEGATIVE LOG-LIKELIHOOD

ℓnll(y, w) =
1

log 2
log(1 + exp(− (2y − 1) × w))

If Y = {0,1} :

If Y = {−1,1} : ℓ0,1(1,w)

w

ℓnll(y, w) =
1

log 2
log(1 + exp(−y × w))

￼43

PROBABILISTIC PREDICTION

➤ Input:

➤ Parameters: avec

➤ Output: ou

x ∈ ℝd

θ = {a, b} a ∈ ℝd, b ∈ ℝ

y ∈ {0,1} y ∈ {−1,1}

Scoring function

Compute a score associated with an input (this function is parameterized)

sθ(x) = s(x; θ) = ⟨a, x⟩ + b

Prediction function

Compute the output associated with a score (this function is not parameterized)

ŷ(w) = {1 if w ≥ 0,
0 otherwise.

What if we want to model the uncertainty?

￼44

PROBABILISTIC PREDICTION
Bernoulli distribution

Distribution over parameterized by {0,1} μ ∈ [0,1]

p(z = 1) = μ p(z = 0) = 1 − μ p(z) = μz(1 − μ)1−z

￼45

PROBABILISTIC PREDICTION

Probabilistic prediction function

Compute the parameter of a Bernoulli distribution over outputs. 
We usually rely on the sigmoid function

ŷ(w) = σ(w) =
exp(w)

1 + exp(w)
=

1
1 + exp(−w)

Bernoulli distribution

Distribution over parameterized by {0,1} μ ∈ [0,1]

p(z = 1) = μ p(z = 0) = 1 − μ p(z) = μz(1 − μ)1−z

￼45

PROBABILISTIC PREDICTION

Probabilistic prediction function

Compute the parameter of a Bernoulli distribution over outputs. 
We usually rely on the sigmoid function

ŷ(w) = σ(w) =
exp(w)

1 + exp(w)
=

1
1 + exp(−w)

Bernoulli distribution

Distribution over parameterized by {0,1} μ ∈ [0,1]

p(z = 1) = μ p(z = 0) = 1 − μ p(z) = μz(1 − μ)1−z

Complete model

p(y = 1 |x) =
exp(⟨a, x⟩ + b)

1 + exp(⟨a, x⟩ + b)
p(y = 0 |x) = 1 −

exp(⟨a, x⟩ + b)
1 + exp(⟨a, x⟩ + b)

￼45

￼46

￼47

PROBABILISTIC BINARY CLASSIFICATION

Input space Score/weight/logit space Output space

x w y

ℝd ℝ [0,1]

w = sθ(x) y = ̂y(w)

Parameter space of a
Bernoulli distribution

￼48

TRAINING A PROBABILISTIC MODEL

What loss should we use to train a probabilistic model?

➤ Negative log-likelihood! (en TD)

￼49

MULTICLASS
CLASSIFICATION

￼50

MULTICLASS CLASSIFICATION

￼51

= +

×

w A b

x

Prediction functions

➤ Integer output :

➤ One-hot vector output :

➤ Probabilistic output (i.e. distribution over classes) :

ŷ(w) = argmaxi∈{1,...,k} wi

ŷ(w) = argmaxy∈E(k) ⟨ y, w ⟩

ŷ(w) = softmax(w)

E(k) is the set of one-hot
vector of dim. k

Weights associated with
each output class

MULTICLASS CLASSIFICATION

￼52

= +

×

w A b

x

Loss functions

➤ hinge loss (m >= 0 is the margin) :

➤ Negative log-likelihood : 
(also called cross-entropy)

ℓ(y, w) = max(0, m − ⟨y, w⟩ + max
y′￼∈E(k)∖{y}

⟨y′￼, w⟩

ℓ(y, w) = − ⟨ y, w ⟩ + log∑
i

exp wi

