Linear model training 1 / 2

Data distribution
We denote p(x,y) the data distribution where:
» x: random variables over inputs

» y: random variables over outputs

1/19

Linear model training 1 / 2

Data distribution
We denote p(x,y) the data distribution where:
» x: random variables over inputs

» y: random variables over outputs

Training problem

Find the model parameters that minimize the expected loss of the data distribution:

min B (os0()]+ Br(0)

» /: loss function

» r: regularization function, usually not applied to all parameters in 0
(i.e. not applied to the bias/intercept term)

> 3 > 0: regularization weight

2/19

Linear model training 2 / 2

Monte-Carlo estimation
We approximate the true expected loss using samples from the data distribution:

Epenl (v 56(x)] = ,}) S Uy, s0(x))
(x,y)eD

where the training dataset D contains |D| samples from the data distribution.

3/19

Linear model training 2 / 2

Monte-Carlo estimation
We approximate the true expected loss using samples from the data distribution:

Epenl (v 56(x)] = ,}) S Uy, s0(x))
(x,y)eD

where the training dataset D contains |D| samples from the data distribution.

Convexity
If
» the scoring function is linear
P the loss is convex
» the regularization function is convex

then the training problem object is convex.

4/19

Generic optimization problem

Reweighting

Sometimes it is easier to absord the ﬁ factor in the regularization weight:

1
arg min ﬁ Z Uy,se(x)) + Br(0)
0 (x,y)eD
= argmin Z Uy,se(x)) + |D|B r(0)
0 (x,y)eD new reg.

weight

5/19

Generic optimization problem

Reweighting

Sometimes it is easier to absord the ﬁ factor in the regularization weight:

1
arg min ﬁ Z Uy,se(x)) + Br(0)
0 (x,y)eD
= argmin Z Uy,se(x)) + |D|B r(0)
0 (x,y)eD new reg.

weight

Generic problem
Let f : R" - RU{oo} and h: R"” — R U {co} be two convex functions.

min f(u) or f(u)+h(u) or min f(Mu)+h(u)

min
uedom f ucdom fNdom h uedom fNdom h

6/19

Gradient descent

7/19

Generic optimization problem

Let's consider the following optimization problem:

s)

where f : R” — R U {co} is a proper, closed and convex function.

Gradient descent algorithm

Assume f is differentiable everywhere in its domain. The gradient descent algorithm is
an iterative optimization algorithm that searches for the minimum of f by considering
a sequence of points as follows:

D) = () _ (Og ()

» () is the stepsize at time step t

> initial point u(®) € dom f can be chosen randomly

8/19

Why does it work?

Theorem: Descent direction
Let u be a non optimal point, i.e. Vf(u) # 0.
Then, there exist € such that:

f(u—eVi(u)) < f(u)

We say that —Vf(u) is a descent direction.
Proof: See [Boyd et al., 2004, Sections 9.2 and 9.3] and [Beck, Lemma 5.7]

9/19

Why does it work?

Theorem: Descent direction
Let u be a non optimal point, i.e. Vf(u) # 0.
Then, there exist € such that:

f(u—eVi(u)) < f(u)

We say that —Vf(u) is a descent direction.
Proof: See [Boyd et al., 2004, Sections 9.2 and 9.3] and [Beck, Lemma 5.7]
Stepsize
How to choose the stepsize?
» line search: (approximately) search for the best stepsize,
i.e. solve () = argmin .o f(x(1) — eVF(x(¥)))
» constant stepsize

» diminishing stepsize: start with a given stepsize and decrease its value each t

steps or according to the function evaluation / dev data evaluation
10/19

Stochastic gradient descent 1 / 3

Let's consider the following optimization problem:

1 n
in =Y f
i 2 i)

where Vi € {1...n},f; : R" — RU {00} is a set of proper closed convex functions,
we assume the intersection of their domain is a non-empty convex set.

In stochastic gradient descent, at each step the gradient is approximated using a
subset of the functions f;:

0
> Vii(u)

u u
|I(t)‘ i€l(t)

where I(t) C {1...n} is the subset of indices used at step t.
= the subset of should consist of uniformly sampled indices!

11/19

Stochastic gradient descent 2 / 3

Machine learning application
We call I(t) a mini-batch and it consists of a subset of the training data.

. 1
mn g X Hys() ¢ ar(o)
(x,y)eD

Approximate this term
using a subset of datapoints

Two approaches

» Sampling with replacement: at each step, randomly choose a subset of datapoints
» Sampling without replacement: optimization is based on a sequence of epochs

» randomly choose of subset of datapoints that you did not see in the current epoch
yet
» an epoch is over when you saw all datapoints

= Sampling without replacement is standard in ML

12/19

Stochastic gradient descent 3 / 3

Loop over epoch
for epoch in range(num_epochs):
random.shuffle(training data)

Loop over minibatches
for i in range(0, len(training_data), minibatch_size):
minibatch = training datal[i : i + minibatch_size]

optimization_step(minibatch)

Evaluate on dev data
evaluate_on_dev()

Other tricks:
» Save the model that obtain the best results on dev

» Control stepsize thanks to dev results

13/19

Coordinate descent

14/19

Coordinate descent

Motivations
All these algorithms require a stepsize, which may be difficult to tune.
Is there any method that does not depend on a stepsize?

15/19

Let f : R" — R be a proper, closed, convex and differentiable function. Assume a

problem of the form:

in f
g, F(e)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:
t+1 . t t t T
ug) € argnﬂwgln ([u, ug), ug),..., u,(7_)1, uf,t) 1)
me

16/19

Let f : R" — R be a proper, closed, convex and differentiable function. Assume a

problem of the form:

in f
g, F(e)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:
ugtH) € argminf([u, uét), ugt),..., u,(7t_)1, uf,t) 1)
um eR
ugtﬂ) € argminf(| ugtﬂ), uy, ugt),..., UI(BI, u,(,t) 1)
uweR

17/19

Let f : R" — R be a proper, closed, convex and differentiable function. Assume a

problem of the form:

in f
g, F(e)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:

u§t+1) c
u§t+1) c
u§t+1) c

argmin f([vy, uét), ugt), - u,(7t_)1, uf,t)]T)
um eR

argmin f(| ugtﬂ), Uy, ugt),..., UI(BI, u® 1)
uwEeR

argmin f(| ugt“), ugtﬂ), us, ..., uf,tjl, uf,t)]T)

uzeR

18/19

Let f : R" — R be a proper, closed, convex and differentiable function. Assume a

problem of the form:

in f
s)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:

ugtH) € argénRin f([u, uét), ugt), ey u,(7t_)1, u® 1)
up
ugtﬂ) € argénRin (] ugtﬂ), U, ugt), ey u,(f,)l, u® 1)
u2
Ugﬁ-l) < ari?Rin (I u£t+1)v u§t+1)v uz, .- UEBp ugt)]T)
uf,t_ll) € arg m;g (] ugtﬂ), uét—H), u§t+1), o tn-1,u$D 7))
ugt+1) € au:glr:in ([ugtﬂ), ugtH), ugtﬂ), - ,(,tjll)a un ")
up€R

Or any other order, as long as you directly use the new value for the next coordinate.

19/19

	Gradient descent
	Coordinate descent

