Linear model training 1 / 2
Data distribution
We denote $p(\mathbf{x}, \mathbf{y})$ the data distribution where:

- \mathbf{x} : random variables over inputs
- y: random variables over outputs

Linear model training $1 / 2$

Data distribution

We denote $p(\mathbf{x}, \mathbf{y})$ the data distribution where:

- \mathbf{x} : random variables over inputs
- \mathbf{y} : random variables over outputs

Training problem

Find the model parameters that minimize the expected loss of the data distribution:

$$
\min _{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}\left[\ell\left(\mathbf{y}, s_{\boldsymbol{\theta}}(\mathbf{x})\right)\right]+\beta r(\theta)
$$

- ℓ : loss function
- r : regularization function, usually not applied to all parameters in $\boldsymbol{\theta}$
(i.e. not applied to the bias/intercept term)
- $\beta \geq 0$: regularization weight

Linear model training 2 / 2

Monte-Carlo estimation

We approximate the true expected loss using samples from the data distribution:

$$
\mathbb{E}_{p(\mathrm{x}, \mathbf{y})}\left[\ell\left(\mathbf{y}, s_{\theta}(\mathbf{x})\right)\right] \simeq \frac{1}{|D|} \sum_{(\mathbf{x}, \boldsymbol{y}) \in D} \ell\left(\boldsymbol{y}, s_{\theta}(\boldsymbol{x})\right)
$$

where the training dataset D contains $|D|$ samples from the data distribution.

Linear model training 2 / 2

Monte-Carlo estimation

We approximate the true expected loss using samples from the data distribution:

$$
\mathbb{E}_{p(\mathbf{x}, \mathbf{y})}\left[\ell\left(\mathbf{y}, s_{\theta}(\mathbf{x})\right)\right] \simeq \frac{1}{|D|} \sum_{(\mathbf{x}, \boldsymbol{y}) \in D} \ell\left(\boldsymbol{y}, s_{\boldsymbol{\theta}}(\mathbf{x})\right)
$$

where the training dataset D contains $|D|$ samples from the data distribution.
Convexity
If

- the scoring function is linear
- the loss is convex
- the regularization function is convex
then the training problem object is convex.

Generic optimization problem

Reweighting

Sometimes it is easier to absord the $\frac{1}{|D|}$ factor in the regularization weight:

$$
\begin{aligned}
& \underset{\boldsymbol{\theta}}{\arg \min } \\
&=\underset{\boldsymbol{\theta}}{\arg \min } \frac{1}{|D|} \sum_{(x, y) \in D} \ell\left(\boldsymbol{y}, s_{\boldsymbol{\theta}}(\boldsymbol{x})\right)+\beta r(\theta) \\
& \sum_{(x, y) \in D} \ell\left(\boldsymbol{y}, s_{\theta}(\boldsymbol{x})\right)+\underbrace{|D| \beta}_{\substack{\text { new reg. } \\
\text { weight }}} r(\theta)
\end{aligned}
$$

Generic optimization problem

Reweighting

Sometimes it is easier to absord the $\frac{1}{|D|}$ factor in the regularization weight:

$$
\begin{aligned}
& \underset{\boldsymbol{\theta}}{\arg \min } \\
&=\underset{\boldsymbol{\theta}}{\arg \min } \sum_{(x, y) \in D} \ell\left(\boldsymbol{y}, s_{\boldsymbol{\theta}}(\boldsymbol{x})\right)+\beta r(\theta) \\
& \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in D} \ell\left(\boldsymbol{y}, s_{\boldsymbol{\theta}}(\boldsymbol{x})\right)+\underbrace{|D| \beta}_{\substack{\text { new reg. } \\
\text { weight }}} r(\theta)
\end{aligned}
$$

Generic problem
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be two convex functions.
$\min _{\boldsymbol{u} \in \operatorname{dom} f} f(\boldsymbol{u}) \quad$ or $\quad \min _{\boldsymbol{u} \in \operatorname{dom} f \cap \operatorname{dom} h} f(\boldsymbol{u})+h(\boldsymbol{u}) \quad$ or $\quad \min _{\boldsymbol{u} \in \operatorname{dom} f \cap \operatorname{dom} h} f(\boldsymbol{M} \boldsymbol{u})+h(\boldsymbol{u})$

Gradient descent

Generic optimization problem

Let's consider the following optimization problem:

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{n}} f(\boldsymbol{u})
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is a proper, closed and convex function.
Gradient descent algorithm
Assume f is differentiable everywhere in its domain. The gradient descent algorithm is an iterative optimization algorithm that searches for the minimum of f by considering a sequence of points as follows:

$$
\boldsymbol{u}^{(t+1)}=\boldsymbol{u}^{(t)}-\epsilon^{(t)} \nabla f\left(\boldsymbol{u}^{(t)}\right)
$$

- $\epsilon^{(t)}$ is the stepsize at time step t
- initial point $\boldsymbol{u}^{(0)} \in \operatorname{dom} f$ can be chosen randomly

Why does it work?

Theorem: Descent direction
Let \boldsymbol{u} be a non optimal point, i.e. $\nabla f(\boldsymbol{u}) \neq 0$.
Then, there exist ϵ such that:

$$
f(\boldsymbol{u}-\epsilon \nabla f(\boldsymbol{u}))<f(\boldsymbol{u})
$$

We say that $-\nabla f(\boldsymbol{u})$ is a descent direction.
Proof: See [Boyd et al., 2004, Sections 9.2 and 9.3] and [Beck, Lemma 5.7]

Why does it work?

Theorem: Descent direction

Let \boldsymbol{u} be a non optimal point, i.e. $\nabla f(\boldsymbol{u}) \neq 0$.
Then, there exist ϵ such that:

$$
f(\boldsymbol{u}-\epsilon \nabla f(\boldsymbol{u}))<f(\boldsymbol{u})
$$

We say that $-\nabla f(\boldsymbol{u})$ is a descent direction.
Proof: See [Boyd et al., 2004, Sections 9.2 and 9.3] and [Beck, Lemma 5.7]

Stepsize

How to choose the stepsize?

- line search: (approximately) search for the best stepsize, i.e. solve $\epsilon^{(t)}=\arg \min _{\epsilon>0} f\left(\boldsymbol{x}^{(t)}-\epsilon \nabla f\left(\boldsymbol{x}^{(t)}\right)\right)$
- constant stepsize
- diminishing stepsize: start with a given stepsize and decrease its value each t steps or according to the function evaluation / dev data evaluation

Stochastic gradient descent 1 / 3

Let's consider the following optimization problem:

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n} f_{i}(\boldsymbol{u})
$$

where $\forall i \in\{1 \ldots n\}, f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is a set of proper closed convex functions, we assume the intersection of their domain is a non-empty convex set.

In stochastic gradient descent, at each step the gradient is approximated using a subset of the functions f_{i} :

$$
\boldsymbol{u}^{(t+1)}=\boldsymbol{u}^{(t)}-\frac{\epsilon^{(t)}}{|\mathrm{I}(t)|} \sum_{i \in \mathrm{I}(t)} \nabla f_{i}(\boldsymbol{u})
$$

where $\mathrm{I}(t) \subseteq\{1 \ldots n\}$ is the subset of indices used at step t.
\Longrightarrow the subset of should consist of uniformly sampled indices!

Stochastic gradient descent 2 / 3

Machine learning application

We call $\mathrm{I}(t)$ a mini-batch and it consists of a subset of the training data.

Two approaches

- Sampling with replacement: at each step, randomly choose a subset of datapoints
- Sampling without replacement: optimization is based on a sequence of epochs
- randomly choose of subset of datapoints that you did not see in the current epoch yet
- an epoch is over when you saw all datapoints
\Longrightarrow Sampling without replacement is standard in ML

Stochastic gradient descent 3 / 3

```
# Loop over epoch
for epoch in range(num_epochs):
    random.shuffle(training_data)
    # Loop over minibatches
    for i in range(0, len(training_data), minibatch_size):
        minibatch = training_data[i : i + minibatch_size]
        optimization_step(minibatch)
    # Evaluate on dev data
    evaluate_on_dev()
```

Other tricks:

- Save the model that obtain the best results on dev
- Control stepsize thanks to dev results

Coordinate descent

Coordinate descent

Motivations

All these algorithms require a stepsize, which may be difficult to tune.
Is there any method that does not depend on a stepsize?

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a proper, closed, convex and differentiable function. Assume a problem of the form:

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{n}} f(\boldsymbol{u})
$$

The coordinate descent algorithm is an iterative optimization algorithm that searches for the minimum of f by considering a sequence of points as follows:

$$
u_{1}^{(t+1)} \in \quad \underset{u_{1} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}, u_{2}^{(t)}, u_{3}^{(t)}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right)
$$

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a proper, closed, convex and differentiable function. Assume a problem of the form:

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{n}} f(\boldsymbol{u})
$$

The coordinate descent algorithm is an iterative optimization algorithm that searches for the minimum of f by considering a sequence of points as follows:

$$
\begin{aligned}
& u_{1}^{(t+1)} \in \underset{u_{1} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}, u_{2}^{(t)}, u_{3}^{(t)}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right) \\
& u_{2}^{(t+1)} \in \underset{u_{2} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}^{(t+1)}, u_{2}, u_{3}^{(t)}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right)
\end{aligned}
$$

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a proper, closed, convex and differentiable function. Assume a problem of the form:

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{n}} f(\boldsymbol{u})
$$

The coordinate descent algorithm is an iterative optimization algorithm that searches for the minimum of f by considering a sequence of points as follows:

$$
\begin{array}{ll}
u_{1}^{(t+1)} & \in \underset{u_{1} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}, u_{2}^{(t)}, u_{3}^{(t)}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right) \\
u_{2}^{(t+1)} & \in \underset{u_{2} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}^{(t+1)}, u_{2}, u_{3}^{(t)}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right) \\
u_{3}^{(t+1)} \in \underset{u_{3} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}^{(t+1)}, u_{2}^{(t+1)}, u_{3}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right)
\end{array}
$$

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a proper, closed, convex and differentiable function. Assume a problem of the form:

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{n}} f(\boldsymbol{u})
$$

The coordinate descent algorithm is an iterative optimization algorithm that searches for the minimum of f by considering a sequence of points as follows:

$$
\begin{array}{ll}
u_{1}^{(t+1)} & \in \underset{u_{1} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}, u_{2}^{(t)}, u_{3}^{(t)}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right) \\
u_{2}^{(t+1)} & \in \underset{u_{2} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}^{(t+1)}, u_{2}, u_{3}^{(t)}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right) \\
u_{3}^{(t+1)} & \in \underset{u_{3} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}^{(t+1)}, u_{2}^{(t+1)}, u_{3}, \ldots, u_{n-1}^{(t)}, u_{n}^{(t)}\right]^{\top}\right) \\
\ldots & \\
u_{n-1}^{(t+1)} & \in \underset{u_{n-1} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}^{(t+1)}, u_{2}^{(t+1)}, u_{3}^{(t+1)}, \ldots, u_{n-1}, u_{n}^{(t)}\right]^{\top}\right) \\
u_{n}^{(t+1)} & \in \underset{u_{n} \in \mathbb{R}}{\arg \min } f\left(\left[u_{1}^{(t+1)}, u_{2}^{(t+1)}, u_{3}^{(t+1)}, \ldots, u_{n-1}^{(t+1)}, u_{n}\right]^{\top}\right)
\end{array}
$$

Or any other order, as long as you directly use the new value for the next coordinate.

