
Linear model training 1 / 2
Data distribution
We denote p(x, y) the data distribution where:
▶ x: random variables over inputs
▶ y: random variables over outputs

Training problem
Find the model parameters that minimize the expected loss of the data distribution:

min
θ

Ep(x,y)[ ℓ(y, sθ(x)) ] + βr(θ)

▶ ℓ: loss function
▶ r : regularization function, usually not applied to all parameters in θ

(i.e. not applied to the bias/intercept term)
▶ β ≥ 0: regularization weight
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Linear model training 2 / 2
Monte-Carlo estimation
We approximate the true expected loss using samples from the data distribution:

Ep(x,y)[ ℓ(y, sθ(x)) ] ≃ 1
|D|

∑
(x,y)∈D

ℓ(y , sθ(x))

where the training dataset D contains |D| samples from the data distribution.

Convexity
If
▶ the scoring function is linear
▶ the loss is convex
▶ the regularization function is convex

then the training problem object is convex.
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Generic optimization problem
Reweighting
Sometimes it is easier to absord the 1

|D| factor in the regularization weight:

arg min
θ

1
|D|

∑
(x,y)∈D

ℓ(y , sθ(x)) + βr(θ)

= arg min
θ

∑
(x,y)∈D

ℓ(y , sθ(x)) + |D|β︸ ︷︷ ︸
new reg.
weight

r(θ)

Generic problem
Let f : Rn → R ∪ {∞} and h : Rn → R ∪ {∞} be two convex functions.

min
u∈dom f

f (u) or min
u∈dom f ∩dom h

f (u)+h(u) or min
u∈dom f ∩dom h

f (Mu)+h(u)
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Gradient descent
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Generic optimization problem
Let’s consider the following optimization problem:

min
u∈Rn

f (u)

where f : Rn → R ∪ {∞} is a proper, closed and convex function.

Gradient descent algorithm
Assume f is differentiable everywhere in its domain. The gradient descent algorithm is
an iterative optimization algorithm that searches for the minimum of f by considering
a sequence of points as follows:

u(t+1) = u(t) − ϵ(t)∇f (u(t))

▶ ϵ(t) is the stepsize at time step t
▶ initial point u(0) ∈ dom f can be chosen randomly
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Why does it work?
Theorem: Descent direction
Let u be a non optimal point, i.e. ∇f (u) ̸= 0.
Then, there exist ϵ such that:

f (u − ϵ∇f (u)) < f (u)

We say that −∇f (u) is a descent direction.
Proof: See [Boyd et al., 2004, Sections 9.2 and 9.3] and [Beck, Lemma 5.7]

Stepsize
How to choose the stepsize?
▶ line search: (approximately) search for the best stepsize,

i.e. solve ϵ(t) = arg minϵ>0 f (x(t) − ϵ∇f (x(t)))
▶ constant stepsize
▶ diminishing stepsize: start with a given stepsize and decrease its value each t

steps or according to the function evaluation / dev data evaluation
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Stochastic gradient descent 1 / 3
Let’s consider the following optimization problem:

min
u∈Rn

1
n

n∑
i=1

fi(u)

where ∀i ∈ {1...n}, fi : Rn → R ∪ {∞} is a set of proper closed convex functions,
we assume the intersection of their domain is a non-empty convex set.

In stochastic gradient descent, at each step the gradient is approximated using a
subset of the functions fi :

u(t+1) = u(t) − ϵ(t)

|I(t)|
∑

i∈I(t)
∇fi(u)

where I(t) ⊆ {1...n} is the subset of indices used at step t.
=⇒ the subset of should consist of uniformly sampled indices!
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Stochastic gradient descent 2 / 3
Machine learning application
We call I(t) a mini-batch and it consists of a subset of the training data.

min
θ

1
|D|

∑
(x,y)∈D

ℓ(y , sθ(x))

︸ ︷︷ ︸
Approximate this term

using a subset of datapoints

+ αr(θ)

Two approaches
▶ Sampling with replacement: at each step, randomly choose a subset of datapoints
▶ Sampling without replacement: optimization is based on a sequence of epochs

▶ randomly choose of subset of datapoints that you did not see in the current epoch
yet

▶ an epoch is over when you saw all datapoints
=⇒ Sampling without replacement is standard in ML
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Stochastic gradient descent 3 / 3
# Loop over epoch
for epoch in range(num_epochs):

random.shuffle(training_data)

# Loop over minibatches
for i in range(0, len(training_data), minibatch_size):

minibatch = training_data[i : i + minibatch_size]

optimization_step(minibatch)

# Evaluate on dev data
evaluate_on_dev()

Other tricks:
▶ Save the model that obtain the best results on dev
▶ Control stepsize thanks to dev results
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Coordinate descent
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Coordinate descent

Motivations
All these algorithms require a stepsize, which may be difficult to tune.
Is there any method that does not depend on a stepsize?
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Let f : Rn → R be a proper, closed, convex and differentiable function. Assume a
problem of the form:

min
u∈Rn

f (u)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:

u(t+1)
1 ∈ arg min

u1∈R
f ( [ u1, u(t)

2 , u(t)
3 , ..., u(t)

n−1, u(t)
n ]⊤ )

u(t+1)
2 ∈ arg min

u2∈R
f ( [ u(t+1)

1 , u2, u(t)
3 , ..., u(t)

n−1, u(t)
n ]⊤ )

u(t+1)
3 ∈ arg min

u3∈R
f ( [ u(t+1)

1 , u(t+1)
2 , u3, ..., u(t)

n−1, u(t)
n ]⊤ )

...

u(t+1)
n−1 ∈ arg min

un−1∈R
f ( [ u(t+1)

1 , u(t+1)
2 , u(t+1)

3 , ..., un−1, u(t)
n ]⊤ )

u(t+1)
n ∈ arg min

un∈R
f ( [ u(t+1)

1 , u(t+1)
2 , u(t+1)

3 , ..., u(t+1)
n−1 , un ]⊤ )

Or any other order, as long as you directly use the new value for the next coordinate.
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