
INTRODUCTION À 
L'APPRENTISSAGE AUTOMATIQUE

Lecture 3 - Polytech 
Caio Corro

￼1

PRE-DEEP LEARNING ERA

1
0

0.34
−5

Feature
extractor Classifier Prediction!

The « old school » machine learning pipeline

Feature extraction

➤ Problem dependent

➤ Images : SIFT features, invariant to translation, scaling, etc.

➤ Text : Stemming, lemmatisation

➤ Automatic or manual

➤ Raw data (sometimes…)

￼2

PRE-DEEP LEARNING ERA

1
0

0.34
−5

Feature
extractor Classifier Prediction!

The « old school » machine learning pipeline

Example of classifiers

➤ Decision Tree:

➤ Make a decision considering a limited number of features

➤ Use conjunction of features to make a prediction

➤ K-nearest neighbors:

➤ All features are used and considered equals

➤ Perceptron/linear classifier:

➤ Weight features so they are more or less important to make a decision

￼3

DEEP LEARNING

Neural Network Prediction!

The deep learning « pipeline »

What’s the difference?

➤ No (or limited) feature extraction: use raw data as input!

➤ Complicated classifier: a neural network is (really) big non-convex function

￼4

Neural architecture design

➤ What kind of parameterized mathematical functions?

➤ Image input: Convolutions? or others.

➤ Text input: Recurrent neural networks? or others.

➤ How many parameters?

➤ How many layers?

Equivariant to translation

Take into account the sequential
nature of the input

BUILDING NEURAL NETWORKS

Architecture design

Neural network = complicated parameterized function

➤ Inductive bias: take into account the data properties to design the architectures

➤ Time complexity/speed

➤ Mathematical properties for efficient training: 

differentiability, prevent vanishing/exploding gradient, ...

Parameter optimization

➤ Efficient optimization algorithms (i.e. first order gradient-based methods)

➤ Prevent overfitting

➤ Parallelized training

￼5

LINEAR CLASSIFICATION

￼6

BINARY LINEAR CLASSIFIER: DEFINITION

fθ(x) = {
−1 if a⊤x + b ≤ 0,

1 if a⊤x + b > 0.

Classification function

➤ In general:

➤ Binary case:

fθ : 𝒳 → 𝒴

fθ : ℝn → {−1,1}

Perceptron

➤ Let the parameters be

➤ Classification function:

θ = {a, b}

Positive class

a

Negative class

Negative class

a

Positive class

￼7

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼8

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼8

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼8

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼8

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼8

PROBLEMATIC CASES

➤ Can we always find a hyperplane that separate classes? NO

➤ Can we characterize formally in which cases we can? YES

￼8

BINARY CLASSIFICATION

Input space Score/weight/logit space Output space

x w y

ℝd ℝ {0,1} or {−1,1}

w = sθ(x) y = ̂y(w)

￼9

Can we replace the scoring
function by something
"more complicated"?

MULTI-LAYER
PERCEPTRON

￼10

MAIN IDEA

￼11

Classifier

Parameterized function fθ : 𝒳 → 𝒴

Parameters

Feature space

Score/output space

Intuition behind multi-layer perceptrons

➤ Compute « latent » hidden representations so that classes are linearly separable

➤ Use non-linear activation units so the transformation is not convex

How to deal with non-separable inputs?

➤ Manually transform the inputs :(

➤ Learn automatically a transformation?

Linear classifier

➤ Input dim: 3

➤ Output dim: k=4 classes

➤ Prediction: class with maximum weight

LINEAR CLASSIFIER FOR MULTI-CLASS CLASSIFICATION

￼12

Problem

➤ Input: features

➤ Output: 1-in-k prediction

= +

×

w A b

x

w = Ax + b

➤ : trainable parameters

➤ : piecewise non-linear activation function

➤ : input features

➤ : hidden representations

➤ : output logits

z(i)

w

θ = {A(1), b(1), . . . }x
σ

MULTILAYER PERCEPTRON 1/2

= σ(+

×

z(1) A(1) b(1)

x

)

z(1) = σ (A(1)x + b(1)) z(2) = σ (A(2)z(1) + b(2)) w = A(3)z(2) + b(3)

Output projectionFirst hidden layer Second hidden layer

￼13

NON-LINEAR ACTIVATION FUNCTIONS 1/2

Main idea

➤ Apply a non-linear transformation

➤ Piecewise (so its fast to compute)

➤ There are many possibilities 

(I’ll just present 3 of them)

Sigmoid

σ(u) =
exp(u)

1 + exp(u)
=

1
1 + exp(−u)

= σ()

σ()
σ()
σ()
σ()

￼14

NON-LINEAR ACTIVATION FUNCTIONS 2/2

Hyperbolic tangent (tanh)

Rectified Linear Unit (relu)

tanh(u) =
exp(2u) − 1
exp(2u) + 1

relu(u) = max(0,u)

￼15

￼16

Graphical or mathematical representation?

➤ Use a graphical representation only if required

➤ Alway prefer the mathematical description!

Code example!

￼17

PREDICTION FUNCTION

￼18

Vocabulary issue

The term "prediction function" can refer to both the "full model" or only the function that
transforms the class weights/logits/scores to an actual output. :(

DO NOT CONFUSE

➤ The (non-linear) activation function (inside the neural network)

➤ The function that transforms weights/logits/scores into an output 

(at the output of the neural network)

NEURAL ARCHITECTURES: 
A REALLY QUICK OVERVIEW

￼19

NEURAL ARCHITECTURE DESIGN

Neural network = complicated parameterized function

➤ Inductive bias: take into account the data to design the architectures

➤ Time complexity/speed

➤ Mathematical properties for efficient training: 

differentiability, prevent vanishing/exploding gradients

￼20

CONVOLUTIONAL NEURAL NETWORKS (CNN)
Intuition

No matter where the cat is in the picture, it is a cat

=> we want to encode this fact in the neural architecture!

Equivariant function

If we apply a transformation on the input, 
the output will be transformed in the « same » way

Invariant function

If we apply a transformation on the input, 
the output will remain the same ￼21

EQUIVARIANT CONVOLUTIONS IN COMPUTER VISION
Translation equivariant convolution

Preserves the « translation structure »

➤ If the input is transposed

➤ The output is also transposed

+ pooling will make the model invariant

￼22

EQUIVARIANT CONVOLUTIONS IN COMPUTER VISION
Translation equivariant convolution

Preserves the « translation structure »

➤ If the input is transposed

➤ The output is also transposed

+ pooling will make the model invariant

Rotation equivariant convolution

Preserves the « rotation structure »

➤ If the input is rotated

➤ The output is also rotated

Standard convolution is not rotation equivariant

￼22

GROUP CONVOLUTIONS [Cohen and Weiling, 2016]

￼23

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

The dog is eating

Token representation

Sentence representation

￼24

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

Token representation

Sentence representation

￼24

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

Forward RNN

The dog is eating

Token representation

Sentence representation

￼24

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

Forward RNN

Backward RNN

The dog is eating

Token representation

Sentence representation

￼24

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

For token representation,
we concatenate the output

of each RNN

The dog is eating

Token representation

Sentence representation

￼24

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

For token representation,
we concatenate the output

of each RNN

The dog is eating

Token representation

Sentence representation

￼24

RECURRENT NEURAL NETWORKS

Recurrent neural networks

➤ Inputs are fed sequentially

➤ State representation updated at each input

Intuition

Use two RNNs with different trainable parameters

The dog is eating

For token representation,
we concatenate the output

of each RNN
For sentence

representation, we
concatenate the output of
the last cell of each RNN

The dog is eating

Token representation

Sentence representation

￼24

SEQUENCE TO SEQUENCE (SEQ2SEQ)

Intuition

1. Encoder: encode the input sentence into a fixed size vector (sentence embedding)

2. Decoder: generate the translation auto-regressively (word by word) conditioned on
the input sentence embedding

The dog is running

z

<BOS> le chien court

le chien court <EOS>
1 2

￼25

SEQUENCE TO SEQUENCE (SEQ2SEQ)

Intuition

1. Encoder: encode the input sentence into a fixed size vector (sentence embedding)

2. Decoder: generate the translation auto-regressively (word by word) conditioned on
the input sentence embedding

The dog is running

z

<BOS> le chien court

le chien court <EOS>
1 2

The sentence embedding is a bottleneck, 
everything must be encoded inside!!

￼25

SEQ2SEQ WITH ATTENTION
Intuition

➤ During decoding, we want to « look » at the input sentence

➤ Particularly, we want to focus on specific words

The dog is running

z

<BOS> le

le ?

Here we need to generate
« chien », so maybe we could look

at « dog » in the input to help?

[Bahdanau et al., 2014]

￼26

SEQ2SEQ WITH ATTENTION
Intuition

➤ During decoding, we want to « look » at the input sentence

➤ Particularly, we want to focus on specific words

The dog is running

z

<BOS> le

le ?

Here we need to generate
« chien », so maybe we could look

at « dog » in the input to help?

Attention mechanism

We had a « module » that wil learn to look at a word from the input

[Bahdanau et al., 2014]

￼26

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

The dog is eating

➤ Based on "heads" that, for a given input, look at other

➤ The model learns which word a given head must attend to

[Vaswani et al., 2017]

￼27

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

The dog is eating

➤ Based on "heads" that, for a given input, look at other

➤ The model learns which word a given head must attend to

[Vaswani et al., 2017]

￼27

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

The dog is eating

Look at the next word

➤ Based on "heads" that, for a given input, look at other

➤ The model learns which word a given head must attend to

[Vaswani et al., 2017]

￼27

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

The dog is eating

Look at the next word

Context sensitive
embedding!

➤ Based on "heads" that, for a given input, look at other

➤ The model learns which word a given head must attend to

[Vaswani et al., 2017]

￼27

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

The dog is eating

Look at the next word

Context sensitive
embedding!

Look at the subject

➤ Based on "heads" that, for a given input, look at other

➤ The model learns which word a given head must attend to

➤ Combine several attention modules to attend to several words

[Vaswani et al., 2017]

￼27

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

The dog is eating

Look at the next word

Context sensitive
embedding!

Look at the subject

Even more context!

➤ Based on "heads" that, for a given input, look at other

➤ The model learns which word a given head must attend to

➤ Combine several attention modules to attend to several words

[Vaswani et al., 2017]

￼27

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

➤ A head is applied to a given position and try to combine with another word

➤ Each head is applied to each position in the sentence

➤ We can use efficient batch matrix multiplication instead of loops

The dog is eating

[Vaswani et al., 2017]

￼28

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

➤ A head is applied to a given position and try to combine with another word

➤ Each head is applied to each position in the sentence

➤ We can use efficient batch matrix multiplication instead of loops

The dog is eating

This is a single
head

[Vaswani et al., 2017]

￼28

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

➤ A head is applied to a given position and try to combine with another word

➤ Each head is applied to each position in the sentence

➤ We can use efficient batch matrix multiplication instead of loops

The dog is eating

This is a single
head

[Vaswani et al., 2017]

￼28

SELF-ATTENTIVE NEURAL NETWORKS / TRANSFORMERS

➤ A head is applied to a given position and try to combine with another word

➤ Each head is applied to each position in the sentence

➤ We can use efficient batch matrix multiplication instead of loops

The dog is eating

This is a single
head

The dog is eating

Same head applied to a
different position

[Vaswani et al., 2017]

￼28

GPU PARALLELIZATION

Pros

➤ Easily parallelizable on GPU, very fast in practice

➤ Direct access to long range dependencies

Cons

➤ Harder to optimize than plain LSTMs

Intuition

➤ No recurrence: use attention only!

➤ Use many attention layers to be able to learn complex patterns

[Vaswani et al., 2017]

￼29

TAKEAWAY

You need to understand the problem you try to solve 
in order to build good neural architecture

￼30

CONVOLUTIONAL NEURAL NETWORKS

￼31

CONVOLUTIONAL NEURAL NETWORKS

￼32

Main idea behing convolutions

➤ No matter where the cat is in the picture, it is a cat 

=> we want to encode this fact in the neural architecture!

➤ If we use a MLP for image inputs, if the input size is large, then the number of

parameters will be very large

Computer vision with a small MLP

Linearize 
the picture

MLP

Class weights

Very big vector!

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

FILTERS AND CONVOLUTIONS

￼33

Assume a signal in 1 dimension

➤ A filter is a vector of fixed size

➤ A filter is applied to each position of the signal (convolved) 

to compute a transformation of the input signal

Input signal

This is a given input, in theory size is not fixed, a convolution can be applied on 
arbitrary size inputs

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

FILTERS AND CONVOLUTIONS

￼33

Assume a signal in 1 dimension

➤ A filter is a vector of fixed size

➤ A filter is applied to each position of the signal (convolved) 

to compute a transformation of the input signal

Input signal

This is a given input, in theory size is not fixed, a convolution can be applied on 
arbitrary size inputs

Filter

Simple filter of dimension 3

➤ The size of the filter is fixed

➤ In practice, the values in the filter are learned => parameters of the model

➤ Can have an additional bias/intercep term

-1 2 -3
a1 a2 a3

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

FILTERS AND CONVOLUTIONS

￼34

Input signal

Filter -1 2 -3
a1 a2 a3

Convolution

Apply the filter on the input signal using a sliding window

x1 x2 x3 x4 x5 x6

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

FILTERS AND CONVOLUTIONS

￼34

Input signal

Filter -1 2 -3
a1 a2 a3

Convolution

Apply the filter on the input signal using a sliding window

x1 x2 x3 x4 x5 x6
z1 = a1 × x1 + a2 × x2 + a3 × x3 + b

z1

dot product

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

FILTERS AND CONVOLUTIONS

￼34

Input signal

Filter -1 2 -3
a1 a2 a3

Convolution

Apply the filter on the input signal using a sliding window

x1 x2 x3 x4 x5 x6
z1 = a1 × x1 + a2 × x2 + a3 × x3 + b

z2 = a1 × x2 + a2 × x3 + a3 × x4 + b

z1 z2

dot product

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

FILTERS AND CONVOLUTIONS

￼34

Input signal

Filter -1 2 -3
a1 a2 a3

Convolution

Apply the filter on the input signal using a sliding window

x1 x2 x3 x4 x5 x6
z1 = a1 × x1 + a2 × x2 + a3 × x3 + b

z2 = a1 × x2 + a2 × x3 + a3 × x4 + b

z3 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3

dot product

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

FILTERS AND CONVOLUTIONS

￼34

Input signal

Filter -1 2 -3
a1 a2 a3

Convolution

Apply the filter on the input signal using a sliding window

x1 x2 x3 x4 x5 x6
z1 = a1 × x1 + a2 × x2 + a3 × x3 + b

z2 = a1 × x2 + a2 × x3 + a3 × x4 + b

z3 = a1 × x3 + a2 × x4 + a3 × x5 + b

z4 = a1 × x4 + a2 × x5 + a3 × x6 + bz1 z2 z3 z4

dot product

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

FILTERS AND CONVOLUTIONS

￼34

Input signal

Filter -1 2 -3
a1 a2 a3

Convolution

Apply the filter on the input signal using a sliding window

x1 x2 x3 x4 x5 x6
z1 = a1 × x1 + a2 × x2 + a3 × x3 + b

z2 = a1 × x2 + a2 × x3 + a3 × x4 + b

z3 = a1 × x3 + a2 × x4 + a3 × x5 + b

z4 = a1 × x4 + a2 × x5 + a3 × x6 + bz1 z2 z3 z4

Output is "shorter"
than input :(

PADDING

￼35

Motivation

We want the output to have the same size as the input

Unpadded input signal

Padded input signal

➤ Pad the signal at the left and right of the input signal

➤ Default value for padding is 0

2 -5 10 3 -2 1

x1 x2 x3 x4 x5 x6

0 2 -5 10 3 -2 1 0

x1 x2 x3 x4 x5 x6

Pad of size 1 on both sides

PADDING

￼36

Convolution

Apply the filter on the input signal using a sliding window

0 x1 x2 x3 x4 x5

Padded input signal 0 2 -5 10 3 -2 1 0

x1 x2 x3 x4 x5 x6

x6 0

PADDING

￼36

Convolution

Apply the filter on the input signal using a sliding window

0 x1 x2 x3 x4 x5

z1 = a1 × x0 + a2 × x1 + a3 × x2 + b

z1

dot product

Padded input signal 0 2 -5 10 3 -2 1 0

x1 x2 x3 x4 x5 x6

x6 0

PADDING

￼36

Convolution

Apply the filter on the input signal using a sliding window

0 x1 x2 x3 x4 x5

z1 = a1 × x0 + a2 × x1 + a3 × x2 + b

z2 = a1 × x1 + a2 × x2 + a3 × x3 + b

z1 z2

dot product

Padded input signal 0 2 -5 10 3 -2 1 0

x1 x2 x3 x4 x5 x6

x6 0

PADDING

￼36

Convolution

Apply the filter on the input signal using a sliding window

0 x1 x2 x3 x4 x5

z1 = a1 × x0 + a2 × x1 + a3 × x2 + b

z2 = a1 × x1 + a2 × x2 + a3 × x3 + b

z3 = a1 × x2 + a2 × x3 + a3 × x4 + b

z1 z2 z3

dot product

Padded input signal 0 2 -5 10 3 -2 1 0

x1 x2 x3 x4 x5 x6

x6 0

PADDING

￼36

Convolution

Apply the filter on the input signal using a sliding window

0 x1 x2 x3 x4 x5

z1 = a1 × x0 + a2 × x1 + a3 × x2 + b

z2 = a1 × x1 + a2 × x2 + a3 × x3 + b

z3 = a1 × x2 + a2 × x3 + a3 × x4 + b

z4 = a1 × x3 + a2 × x4 + a3 × x5 + b
z1 z2 z3 z4

dot product

Padded input signal 0 2 -5 10 3 -2 1 0

x1 x2 x3 x4 x5 x6

x6 0

PADDING

￼36

Convolution

Apply the filter on the input signal using a sliding window

0 x1 x2 x3 x4 x5

z1 = a1 × x0 + a2 × x1 + a3 × x2 + b

z2 = a1 × x1 + a2 × x2 + a3 × x3 + b

z3 = a1 × x2 + a2 × x3 + a3 × x4 + b

z4 = a1 × x3 + a2 × x4 + a3 × x5 + b
z1 z2 z3 z4

Padded input signal 0 2 -5 10 3 -2 1 0

x1 x2 x3 x4 x5 x6

z5 = a1 × x4 + a2 × x5 + a3 × x6 + b

x6 0

z5

dot product

PADDING

￼36

Convolution

Apply the filter on the input signal using a sliding window

0 x1 x2 x3 x4 x5

z1 = a1 × x0 + a2 × x1 + a3 × x2 + b

z2 = a1 × x1 + a2 × x2 + a3 × x3 + b

z3 = a1 × x2 + a2 × x3 + a3 × x4 + b

z4 = a1 × x3 + a2 × x4 + a3 × x5 + b
z1 z2 z3 z4

Padded input signal 0 2 -5 10 3 -2 1 0

x1 x2 x3 x4 x5 x6

z5 = a1 × x4 + a2 × x5 + a3 × x6 + b

z6 = a1 × x5 + a2 × x6 + a3 × x0 + b

x6 0

z6

dot product

Output of same size
as input :)

PADDING

￼37

Padded input signal (pad size=2)

0 0 2 -5 10 3 -2 1 0 0

x1 x2 x3 x4 x5 x6

Filter -1 2 -3 8 -5
a1 a2 a3 a4 a5

If the filter is "larger", 
we may want to increase padding

PADDING

￼37

Padded input signal (pad size=2)

0 0 2 -5 10 3 -2 1 0 0

x1 x2 x3 x4 x5 x6

Filter -1 2 -3 8 -5
a1 a2 a3 a4 a5

If the filter is "larger", 
we may want to increase padding

Convolution

z1 = a1 × x0 + a2 × 0 + a3 × x1 + a4 × x2 + a5 × x3 + b

0 0 x1 x2 x3 x4

z1 z2 z3 z4

dot product

x5 x6

z5 z6

0 0

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5 x6 0
Stride of 1

0 x1 x2 x3 x4 x5 x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b

z1

dot product

x6 0
Stride of 1

0 x1 x2 x3 x4 x5 x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b

z1 z2

dot product

x6 0
Stride of 1

0 x1 x2 x3 x4 x5 x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b

z1 z2 z3

dot product

x6 0
Stride of 1

0 x1 x2 x3 x4 x5 x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b
z4 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3 z4

dot product

x6 0
Stride of 1

0 x1 x2 x3 x4 x5 x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b
z4 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3 z4
z5 = a1 × x4 + a2 × x5 + a3 × x6 + b

x6 0

z5

dot product

Stride of 1

0 x1 x2 x3 x4 x5 x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b
z4 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3 z4
z5 = a1 × x4 + a2 × x5 + a3 × x6 + b
z6 = a1 × x5 + a2 × x6 + a3 × x0 + b

x6 0

z5 z6

dot product

Stride of 1

0 x1 x2 x3 x4 x5 x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b
z4 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3 z4
z5 = a1 × x4 + a2 × x5 + a3 × x6 + b
z6 = a1 × x5 + a2 × x6 + a3 × x0 + b

x6 0

z5 z6

Stride of 1

0 x1 x2 x3 x4 x5 x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b
z4 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3 z4
z5 = a1 × x4 + a2 × x5 + a3 × x6 + b
z6 = a1 × x5 + a2 × x6 + a3 × x0 + b

x6 0

z5 z6

Stride of 1

0 x1 x2 x3 x4 x5
z1 = a1 × 0 + a2 × x1 + a3 × x2 + b

z1

dot product

x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b
z4 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3 z4
z5 = a1 × x4 + a2 × x5 + a3 × x6 + b
z6 = a1 × x5 + a2 × x6 + a3 × x0 + b

x6 0

z5 z6

Stride of 1

0 x1 x2 x3 x4 x5
z1 = a1 × 0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x2 + a2 × x3 + a3 × x4 + b

z1 z2

dot product

x6 0

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b
z4 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3 z4
z5 = a1 × x4 + a2 × x5 + a3 × x6 + b
z6 = a1 × x5 + a2 × x6 + a3 × x0 + b

x6 0

z5 z6

Stride of 1

0 x1 x2 x3 x4 x5
z1 = a1 × 0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x2 + a2 × x3 + a3 × x4 + b

z1 z2

z3 = a1 × x4 + a2 × x5 + a3 × x6 + b

x6 0

z3

dot product

Stride of 2

STRIDE

￼38

Definition

The stride is the number of positions you move the filter between two applications.

=> the larger the stride, the smaller the output will be!

0 x1 x2 x3 x4 x5
z1 = a1 × x0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x1 + a2 × x2 + a3 × x3 + b
z3 = a1 × x2 + a2 × x3 + a3 × x4 + b
z4 = a1 × x3 + a2 × x4 + a3 × x5 + b

z1 z2 z3 z4
z5 = a1 × x4 + a2 × x5 + a3 × x6 + b
z6 = a1 × x5 + a2 × x6 + a3 × x0 + b

x6 0

z5 z6

Stride of 1

0 x1 x2 x3 x4 x5
z1 = a1 × 0 + a2 × x1 + a3 × x2 + b
z2 = a1 × x2 + a2 × x3 + a3 × x4 + b

z1 z2

z3 = a1 × x4 + a2 × x5 + a3 × x6 + b

x6 0

z3

Stride of 2

POOLING

￼39

Objective

Reduce ("compress") the representation.

Main idea

➤ Compute max or average/mean over a fixed window

➤ No parameter for pooling layers

➤ Usually no padding

➤ As for filter, we need to define the size and stride of the pooling operation

x1 x2 x3 x4 x5 x6

Window/filter of size 2, stride of 2

POOLING

￼39

Objective

Reduce ("compress") the representation.

Main idea

➤ Compute max or average/mean over a fixed window

➤ No parameter for pooling layers

➤ Usually no padding

➤ As for filter, we need to define the size and stride of the pooling operation

x1 x2 x3 x4 x5
z1 = max(x1, x2)

z1

max

x6

Window/filter of size 2, stride of 2

POOLING

￼39

Objective

Reduce ("compress") the representation.

Main idea

➤ Compute max or average/mean over a fixed window

➤ No parameter for pooling layers

➤ Usually no padding

➤ As for filter, we need to define the size and stride of the pooling operation

x1 x2 x3 x4 x5
z1 = max(x1, x2)

z1 z2

x6

Window/filter of size 2, stride of 2

max z2 = max(x3, x4)

POOLING

￼39

Objective

Reduce ("compress") the representation.

Main idea

➤ Compute max or average/mean over a fixed window

➤ No parameter for pooling layers

➤ Usually no padding

➤ As for filter, we need to define the size and stride of the pooling operation

x1 x2 x3 x4 x5
z1 = max(x1, x2)

z1 z2

x6

z3

Window/filter of size 2, stride of 2

max z2 = max(x3, x4)

z3 = max(x5, x6)

POOLING

￼39

Objective

Reduce ("compress") the representation.

Main idea

➤ Compute max or average/mean over a fixed window

➤ No parameter for pooling layers

➤ Usually no padding

➤ As for filter, we need to define the size and stride of the pooling operation

x1 x2 x3 x4 x5
z1 = max(x1, x2)

z1 z2

x6

z3

Window/filter of size 2, stride of 2

z2 = max(x3, x4)

z3 = max(x5, x6)

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

9

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

9 10

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

9 10 11

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

9 10 11 12

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

9 10 11 12

13

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

9 10 11 12

13 14

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

2 DIMENSION CONVOLUTIONS, STRIDE=1

￼40Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

INPUT DEPTH, CHANNELS

￼41

Example of input dimensions

Imaged have third dimension called channel to encode colors:

➤ Grayscale picture: 100 x 100 x 1

➤ Coloured picture : 100 x 100 x 3 (last dimension is RGB)

3D filter

➤ F: size of the filter

➤ C: number of channels in the input

The output associated with an application of this
filter will be of size O x O x 1

Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

MULTIPLE FILTERS AND OUTPUT CHANNELS

￼42

Multiple filters

In practice, we use multiple filters:

➤ F: size of the filters (in theory we could have filters of different sizes)

➤ C: number of channels in the input

➤ K: number of filters

The output associated with an application of this filter will be of size O x O x K

Warning

➤ Each filter have its own set of parameters

➤ They must be initialized randomly and "differently" to avoid symmetries

Illustrations from https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

https://stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neurones-convolutionnels

POOLING IN 2D

￼43Illustration from https://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/

FULL ARCHITECTURE

￼44Illustration from https://cs231n.github.io/convolutional-networks/

MLP to compute class
weights at the end

➤ Apply non-linear activation function after convolution layers

➤ At the end of the convolutional architecture, 

linearize the hidden representations and use it a input of a MLP

https://cs231n.github.io/convolutional-networks/

DATA AUGMENTATION

￼45

Original image Flip Rotation Random crop

Color shift Noise addition Information loss Contrast change

Illustration from https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

➤ Convolutions are equivariant to translation, but not to other transformations

➤ To learn equivariance/invariance to other transformations, 

just randomly modify the input while training

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

NEURAL NETWORK
TRAINING

￼46

GRADIENT-BASED TRAINING

Neural network

Parameterized function fθ : 𝒳 → 𝒴

Parameters

Feature space

Output space

End-to-end training

➤ In the old days: layer per layer training (in some kind of generative model)

➤ Nowadays: Train all parameters at the same time 

(+ unsupervised pretraining in some cases)

Training

➤ Labeled example: features + « gold » answer

➤ Train set:

➤ Find parameters so that

D = {(x(i), y(i))}n
i=1

θ fθ(x(i)) ≃ y(i), ∀i

Testing / evaluation

➤ Test if the model generalizes to unseen data (i.e. disjoint set from the train set) ￼47

LOSS FUNCTION

Intuition

➤ Compare the output with the gold output (i.e. the expected output)

➤ The loss must be minimized (& bounded below by 0)

➤ Must be related to the evaluation function, but often slightly different

θ* = argminθ
1
n

n

∑
i=1

l(y(i), fθ(x(i)))

Learning objective

➤ Modern machine learning is optimization

￼48

In the course notations, 
this should be the output 

of the score function

GRADIENT DESCENT

Intuition

➤ All you can compute: evaluate the function and its gradient at a given point

➤ You can use gradient information to see in which direction the function is decreasing

➤ Therefore: just make a small step in this direction!

➤ In this course we won’t differentiate between gradient and sub-gradient

➤ In deep learning, it is usual to rely on stochastic gradient descent 
with "large" minibatch size

Formally

➤ Choose an initial point randomly:

➤ Make T iterations/steps:

θ(0)

θ(t+1) = θ(t) − η × ∇θg(θ)

Problem

Solve: min

θ
g(θ)

Stepsize ￼49

NON-CONVEX FUNCTION ILLUSTRATION

Many local minima! Do we care? NO
￼50

TRAIN/DEV/TEST

Three datasets

➤ Train set: 

Used to compute the objective and its gradient

➤ Development / validation set:  

Used during training to choose hyper-parameters and to know when to stop training

➤ Test set: 

Used to evaluate the model!

Parameters vs. hyper-parameters

➤ Parameters: the parameters of the function, which are learned during training

➤ Hyper-parameters: the parameters of the training algorithm and the neural

architecture choice (number of layers, hidden representation dimensions, …)

￼51

