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The big picture

Data split and usage
▶ Training set: to learn the parameters of the network
▶ Development (or dev or validation) set: to monitor the network during training
▶ Test set: to evaluate our model at the end

Generally you don’t have to split the data yourself: there exists standard splits to allow
benchmarking.

Training loop
1. Update the parameters to minimize the loss on the training set
2. Evaluate the prediction accuracy on the dev set
3. If not satisfied, go back to 1
4. Evaluate the prediction accuracy on the test set with the best parameters on dev
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Pseudo-code

function Train(f , θ, T , D)

bestdev = −∞
for epoch = 1 to E do

Shuffle T
for x , y ∈ T do

loss = L(f (x ; θ), y)
θ = θ − ϵ∇loss

devacc =Evaluate(f , D)
if devacc > bestdev then

θ̂ = θ
bestdev = devacc

return θ̂

function Evaluate(f , D)
n = 0
for x , y ∈ D do

ŷ = arg maxy f (x ; θ)y
if ŷ = y then

n = n + 1
return n/|D|
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if ŷ = y then

n = n + 1
return n/|D|

5 / 41



Further details
Sampling without replacement
▶ shuffle the training set
▶ loop over the new order

Experimentally it works better than "true" sampling and it seems to also have good
theoretical properties [Nagaraj et al., 2019]

Verbosity
At each epoch, it is useful to display:
▶ mean loss
▶ accuracy on training data
▶ accuracy on dev data
▶ timing information
▶ (sometimes) evaluate on dev several times by epoch
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Step-size
θ(t+1) = θ(t) − ϵ(t)∇loss ⇒ How to choose the step size ϵ(t+1)?

Convex optimization
▶ Nonsummable diminishing step size:

∑∞
t=1 ϵ(t) = ∞ and limt→∞ ϵ(t) = 0

▶ Backtracking/exact line search

Simple neural network heuristic
1. Start with a small value, e.g. ϵ = 0.01
2. If dev accuracy did not improve during the last N epochs:

decay the learning rate by a small value α, e.g. ϵ = α ∗ ϵ with α = 0.1

Step-size annealing
▶ Step decay: multiple ϵ by α ∈ [0, 1] every N epochs
▶ Exponential decay: ϵ(t) = ϵ(0) exp(−α · t)
▶ 1/t decay: ϵ(t) = ϵ(0)

1+α·t
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Backpropagation
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Neural network libraries

Problem
▶ We need the gradient of the objective for training
▶ We don’t want to compute it by ourselves, too complicated

Backpropagation algorithm
▶ Forward pass: define the function to compute (i.e. the objective)
▶ Backward pass: automatically compute the gradient wrt parameters :)

Computational graph
During the forward pass, we construct a computational graph that retain all operations
used to compute the objective
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A typology of neural network libraries

Static computational graphs
Defines the computation graph once for all, just update the inputs (ex: Tensorflow,
Dynet C++ API)

Dynamic computational graphs
Each time we need to compute a value, we have to rebuild the full graph
▶ Eager: computation are done immediately (ex: Pytorch 1&2, Tensorflow)
▶ Lazy: first define the computation, the execute it (ex: Dynet, Pytorch 2)

=> allows for forward pass optimization!
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Computation Graph (CG) 2/2
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Vanishing gradient, activation functions and initialization
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Experimental observations
The MNIST database

Comparison of different depth for feed-forward architecture

x(1) x(2) x(3) x(L)

W (1)
y (1)

W (2)
y (2) y (L−1)

W (L)
y (L): output

▶ Hidden layers have a sigmoid activation function.
▶ The output layer is softmax.
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Experimental observations: http://neuralnetworksanddeeplearning.com/chap5.html
▶ Without hidden layer: ≈ 88% accuracy
▶ 1 hidden layer (30): ≈ 96.5% accuracy
▶ 2 hidden layer (30): ≈ 96.9% accuracy
▶ 3 hidden layer (30): ≈ 96.5% accuracy
▶ 4 hidden layer (30): ≈ 96.5% accuracy
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Intuitive explanation 1/2

Let consider the simplest deep neural network, with just a single neuron in each layer.

wi , bi are resp. the weight and bias of neuron i and C some loss function.

Compute the gradient of C w.r.t the bias b1

∂C
∂b1

= ∂C
∂y4

× ∂y4
∂a4

× ∂a4
∂y3

× ∂y3
∂a3

× ∂a3
∂y2

× ∂y2
∂a2

× ∂a2
∂y1

× ∂y1
∂a1

× ∂a1
∂b1

(1)

= ∂C
∂y4

× σ′(a4) × w4 × σ′(a3) × w3 × σ′(a2) × w2 × σ′(a1) (2)

16 / 41



Intuitive explanation 1/2

Let consider the simplest deep neural network, with just a single neuron in each layer.

wi , bi are resp. the weight and bias of neuron i and C some loss function.

Compute the gradient of C w.r.t the bias b1

∂C
∂b1

= ∂C
∂y4

× ∂y4
∂a4

× ∂a4
∂y3

× ∂y3
∂a3

× ∂a3
∂y2

× ∂y2
∂a2

× ∂a2
∂y1

× ∂y1
∂a1

× ∂a1
∂b1

(1)

= ∂C
∂y4

× σ′(a4) × w4 × σ′(a3) × w3 × σ′(a2) × w2 × σ′(a1) (2)

16 / 41



Intuitive explanation 2/2
The derivative of the activation function: σ′

−10 −5 0 5 10
0

0.25

0.5

0.75

1

σ(x) = 1
1 + exp(−x)

σ′(x) = σ(x)(1 − σ(x))

Vanishing gradient
▶ if the last layer are well trained (and outputs "strong values" close to 0 or 1),
▶ early layers receive a really small incoming gradient.

In the "best case", we successive multiplications by 0.25!
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Other activation functions

−4 −2 0 2 4
−1

−0.5

0

0.5

1

Hyperbolic tangent

tanh(x) = 1 − exp(−2x)
1 + exp(−2x) tanh′(x) = 1 − tanh(x)2

▶ Better gradient than sigmoid around 0
▶ Popular in Natural Language Processing

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

Rectified Linear Unit

relu(x) =
{

0 if ≤ 0
x otherwise

relu ′(x) =


0 if x < 0
1 if x > 0
undefined otherwise

▶ No vanishing gradient issue
▶ "Dead units" problem (i.e. bi << 0)
▶ Popular in Computer Vision (very deep networks)
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Parameters initialization
What do we want?
▶ Values close to 0 prevent gradient vanishing

(or gradient exploding/disappearing in the case of relu)
▶ Gradient magnitude approximately similar for all layers

(to prevent that a subset of layers do all the works while others are useless)

Hyperbolic tangent
Let W ∈ Rm×n and b ∈ Rm:
▶ W ∼ U

[
−

√
6√

m+n , +
√

6√
m+n

]
▶ b = 0

Usually called Xavier or Glorot initialization
[Glorot and Bengio, 2010]

Rectified Linear Unit
Let W ∈ Rm×n and b ∈ Rm:
▶ W ∼ U

[
−

√
6√
n , +

√
6√
n

]
▶ b = 0

(or b = 0.01 to prevent dying units)
Usually called Kaiming or He initialization
[He et al., 2015]

19 / 41



Parameters initialization
What do we want?
▶ Values close to 0 prevent gradient vanishing

(or gradient exploding/disappearing in the case of relu)
▶ Gradient magnitude approximately similar for all layers

(to prevent that a subset of layers do all the works while others are useless)

Hyperbolic tangent
Let W ∈ Rm×n and b ∈ Rm:
▶ W ∼ U

[
−

√
6√

m+n , +
√

6√
m+n

]
▶ b = 0

Usually called Xavier or Glorot initialization
[Glorot and Bengio, 2010]

Rectified Linear Unit
Let W ∈ Rm×n and b ∈ Rm:
▶ W ∼ U

[
−

√
6√
n , +

√
6√
n

]
▶ b = 0

(or b = 0.01 to prevent dying units)
Usually called Kaiming or He initialization
[He et al., 2015]

19 / 41



Regularization

20 / 41



Generalization
Overparameterized neural networks
Networks where the number of parameters exceed the training dataset size.
▶ Can learn by heart the dataset,

i.e. overfit the data → does not generalize well to unseen data
▶ Are easier to optimize in practice

Monitoring the training process
▶ Loss should go down ⇒ otherwise your step-size is probably too big!
▶ Training accuracy should go up
▶ Dev accuracy should go up ⇒ otherwise the network is overfitting!

Regularization
Techniques to control parameters during learning and prevent overfitting
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Learning with random inputs and labels 1/2 [Zhang et al., 2017]
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Learning with random inputs and labels 2/2 [Zhang et al., 2017]
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L2 Regularization or weight decay
L2 regularization

θ̂ = arg min
θ

ℓ(y , sθ(x)) + β

2 ||θ||2

= arg min
θ

ℓ(y , sθ(x)) + R(θ; β)

▶ We don’t actually care about the regularization term value, we only care about its
gradient

▶ The regularization term is expensive to compute, and even "difficult" to define
(need to list all of the parameters of the networks)

Weight decay
▶ Simply modify the gradient instead of adding a term in the objective
▶ We can show it is equivalent to L2 regularzation

θ(t+1) = (1 − λ)θ(t) − ϵ∇θ(t)ℓ(y , sθ(t)(x))
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L2Regularization or weight decay 3/3

Implementation from Pytorch (slightly modified):
class SGD(Optimizer):

def step(self, closure=None):
"""Performs a single optimization step."""
for group in self.param_groups:

for p in group['params']:
if p.grad is None:

continue

d_p = p.grad.data # get gradient
weight_decay = group['weight_decay']
if weight_decay != 0:

d_p.add_(weight_decay, p.data) # add weight decay to the gradient

p.data.add_(-group['lr'], d_p) # update parameters
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Dropout 1/4 [Hinton et al., 2012, Srivastava et al., 2014]
How does dropout work?
▶ During training, we randomly "turn off" neurons,

i.e. we randomly set elements of hidden layers z to 0
▶ During test, we do use the full network

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Intuition
▶ prevents co-adaptation between units
▶ equivalent to averaging different models that have different structure but share
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Dropout 2/4 [Hinton et al., 2012]
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Dropout 3/4
Dropout layer
A dropout layer is parameterized by the probability of "turning off" a neuron p ∈ [0, 1]:

z ′ = Dropout(z; p = 0.5)

Implementation
▶ z ∈ Rn: output of a hidden

layer
▶ p ∈ [0, 1]: dropout probability
▶ m ∈ {0, 1}n: mask vector
▶ z ′: hidden values after

dropout application

Forward pass:

m ∼ Bernoulli(1 − p)

z ′
i = zi ∗ mi

1 − p

Backward pass:

∂z ′
i

zi
= m

1 − p

⇒ no gradient for
"turned off" neurons.

The mask m is a vector of booleans stating if neurons zi is kept (mi = 1) or "turned
off" (mi = 0).
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Dropout 4/4
Where do you apply dropout?
▶ On the input of the neural network x
▶ After activation functions (σ(0) ̸= 0)
▶ Do not apply dropout on the output logits

Which dropout probability should you use?
▶ Empirical question: you have to test!
▶ Dropout probability at different layers can be different

(especially input vs. hidden layers)
▶ Usually 0.1 ≤ p ≤ 0.5

Dropout variants
Dropout can be applied differently for special neural network architectures
(e.g. convolutions, recurrent neural networks)
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Better optimizers
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Stochastic Gradient Descent (SGD)

θ(t+1) = θ(t) − ϵ(t)∇θL

Advantages
▶ Simple
▶ Single hyper-parameter: the step-size ϵ

Downsides
▶ Forget information about previous updates
▶ Require to search for the best step-size strategy
▶ Require step-size annealing in practice: how? what scaling factor?
▶ Based on first-order information only

(i.e. the curvature of the optimized function is ignored)
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Momentum 1/3

∇θL(t−2)

∇θL(t−1)

∇θL(t−2)

"main direction"
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Momentum 2/3

[Polyak, 1964]
▶ γ: velocity of parameters, i.e. cumulative information about past gradients
▶ µ ∈ [0, 1]: momentum, i.e. how much information must be preserved?

γ(t+1) = µγ(t) + ∇θL
θ(t+1) = θ(t) − ϵγ(t+1)

Variants
▶ Gradient dampening, i.e. diminish the contribution of the current gradient
▶ Nesterov’s Accelerated Gradient [Sutskever et al., 2013]
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Momentum 3/3
Implementation from Pytorch (slightly modified):
for group in self.param_groups:

for p in group['params']:
if p.grad is None:

continue

d_p = p.grad.data # get the gradient
if momentum != 0:

param_state = self.state[p]
if 'momentum_buffer' not in param_state: # initialize velocity vector

buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:

buf = param_state['momentum_buffer'] # retrieve velocity vector
buf.mul_(momentum).add_(d_p) # update velocity vector

d_p = buf

p.data.add_(-group['lr'], d_p) # update parameters
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Adaptive learning rates 1/2
Adagrad [Duchi et al., 2011]
▶ Replace global step-size with dynamic per parameter step-size + global learning rate
▶ The dynamic per parameter step-size is computed w.r.t. previous gradient l2-norm

⇒ parameters with small (resp. large) gradient will have a large (resp. small) step-size

Adadelta [Zeiler, 2012]
▶ Dynamic per parameter rate is computed with a fixed window of past gradients
▶ Approximate second-order information to incorporate curvature information

⇒ less sensitive to the learning rate hyper-parameter!

35 / 41



Adaptive learning rates 1/2
Adagrad [Duchi et al., 2011]
▶ Replace global step-size with dynamic per parameter step-size + global learning rate
▶ The dynamic per parameter step-size is computed w.r.t. previous gradient l2-norm

⇒ parameters with small (resp. large) gradient will have a large (resp. small) step-size

Adadelta [Zeiler, 2012]
▶ Dynamic per parameter rate is computed with a fixed window of past gradients
▶ Approximate second-order information to incorporate curvature information

⇒ less sensitive to the learning rate hyper-parameter!

35 / 41



Adaptive learning rates 1/2
Adagrad [Duchi et al., 2011]
▶ Replace global step-size with dynamic per parameter step-size + global learning rate
▶ The dynamic per parameter step-size is computed w.r.t. previous gradient l2-norm

⇒ parameters with small (resp. large) gradient will have a large (resp. small) step-size

Adadelta [Zeiler, 2012]
▶ Dynamic per parameter rate is computed with a fixed window of past gradients
▶ Approximate second-order information to incorporate curvature information

⇒ less sensitive to the learning rate hyper-parameter!

35 / 41



Adaptive learning rates 1/2
Adagrad [Duchi et al., 2011]
▶ Replace global step-size with dynamic per parameter step-size + global learning rate
▶ The dynamic per parameter step-size is computed w.r.t. previous gradient l2-norm

⇒ parameters with small (resp. large) gradient will have a large (resp. small) step-size

Adadelta [Zeiler, 2012]
▶ Dynamic per parameter rate is computed with a fixed window of past gradients
▶ Approximate second-order information to incorporate curvature information

⇒ less sensitive to the learning rate hyper-parameter!

35 / 41



Adaptive learning rate 2/2
Adam [Kingma and Ba, 2015]
▶ Combine dynamic per parameter learning rate and momentum
▶ Initialization bias correction

Convergence issue but works very well in practice [Reddi et al., 2018]
Variants: AdaMax, Nadam [Dozat, 2016], Radam [Liu et al., 2019], AMSGrad

Rule of thumb
▶ Optimizers based on adaptive learning rates usually work out of the box

e.g. Adam is really popular in Natural Language Processing
▶ Fine-tuned SGD with step-size annealing can provide better results at the cost of

expensive hyper-parameter tuning

Regularization issue
Weight decay is not equivalent to l2-norm when using adaptive learning rates!
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