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Theory

2 / 32



Problem

Train/test objective mismatch
▶ At training time we minimize a loss function, e.g. the hinge loss
▶ At test time we evaluate the model using a different function,

e.g. classification error / classification accuracy
There is a mismatch between the two objective!

Goal
Can we prove that minimizing a given loss function also minimizes the test time
objective?
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Assumptions

▶ We assume the class of scoring functions S is “rich enough”
(i.e. set of all measurable mappings)

▶ We assume we have access to an infinite number of training datapoints
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0-1 loss function
Definition of the 0-1 loss function
Count the number of classification errors
⇒ exactly what we aim to minimize at test time

Binary classification
▶ If Y = {0, 1}: ℓ0−1(y , w) = 1[(2y − 1)w < 0] = [ sign(w) ̸= 2y − 1]
▶ If Y = {−1, 1}: ℓ0−1(y , w) = 1[y × w < 0] = [ sign(w) ̸= y ]

Multiclass classification
▶ If Y = E (k):

ℓ0−1(y , w) =
{

0 if y = arg maxy ′∈E(k)⟨w , y ′⟩,
1 otherwise.

▶ If Y = {1, ..., k}:
ℓ0−1(y , w) = 1[y ̸= arg max

y ′∈{1,...,k}
wy ′ ]
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Bayes risk
Notations
▶ x: random variable representing inputs in Rd

▶ y: random variable representing outputs, problem dependent
▶ p(x, y): data distribution, unknown in practice but we can still use it for theory
▶ S: set of scoring functions

WARNING
The input/output mapping in the data distribution is not necessarily deterministic, an
input x ∈ Rd may be associated with several outputs with a non null probability.

Risk of a scoring function
The risk of a given scoring function s ∈ S is denoted:

r(s) = Ex,y[ ℓ0−1(y, s(x)) ]

or, in other words, it is the classification error probability for classifier based on s.
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Minimum Bayes risk
Risk of a scoring function
The risk of a given scoring function s ∈ S is denoted:

r(s) = Ex,y[ ℓ0−1(y, s(x)) ]

or, in other words, it is the classification error probability for classifier based on s.

Minimum Bayes risk
It seems that it is a good idea to aim for a model of minimum Bayes risk:

r∗ = inf
s∈S

r(s) = inf
s∈S

Ex,y[ ℓ0−1(y, s(x)) ]

= inf
s∈S

Ex
[
Ey|x[ ℓ0−1(y, s(x)) ]

]
= Ex

[
1 − max

y∈Y
p(y = y |x)

]
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Surrogate losses

Recall
In practice we cannot use the 0-1 loss:
▶ non-convex
▶ partial derivatives are null almost everywhere

It is known that minimizing the 0-1 loss is a NP-hard problem (Ben-David et al., 2003;
Feldman et al., 2009)

Main idea
▶ Replace the 0-1 loss with a surrogate loss
▶ hope (prove?) that minimizing the surrogate loss leads to a classifier of minimum

Bayes risk
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Classification calibration
Surrogate risk
Let ℓ̃ be a surrogate loss.
The surrogate risk r̃(s) of scoring function s ∈ S is defined as:

r̃(s) = Ex,y[ ℓ̃(y, s(x)) ],

and the optimal surrogate risk r̃∗ is defined as:

r̃∗ = inf
s∈S

r̃(s) = inf
s∈S

Ex,y[ ℓ̃(y, s(x)) ]

Definition
A surrogate loss ℓ̃ is said to be classification calibrated if and only if:

s∗ ∈ arg min
s∈S

r̃(s) =⇒ r(s∗) = r∗,

i.e. minimizing the surrrogate risk leads to a prediction model of optimal Bayes risk.
This property is also called Bayes consistency and Fisher consistency.

10 / 32



Classification calibration
Surrogate risk
Let ℓ̃ be a surrogate loss.
The surrogate risk r̃(s) of scoring function s ∈ S is defined as:

r̃(s) = Ex,y[ ℓ̃(y, s(x)) ],

and the optimal surrogate risk r̃∗ is defined as:

r̃∗ = inf
s∈S

r̃(s) = inf
s∈S

Ex,y[ ℓ̃(y, s(x)) ]

Definition
A surrogate loss ℓ̃ is said to be classification calibrated if and only if:

s∗ ∈ arg min
s∈S

r̃(s) =⇒ r(s∗) = r∗,

i.e. minimizing the surrrogate risk leads to a prediction model of optimal Bayes risk.
This property is also called Bayes consistency and Fisher consistency. 11 / 32



Pointwise analysis 1/2

Assumption
We assume the class of scoring function S is “rich enough”
(i.e. set of all measurable mappings)

r∗ = inf
s∈S

r(s) = inf
s∈S

Ex,y[ ℓ0−1(s(x), y) ]

= inf
∀x∈X : w (x)∈Rk

Ex
[
Ey|x[ ℓ0−1(y, w (x)) ]

]
= Ex

[
inf

w (x)∈Rk
Ey|x

[
ℓ0−1(y, w (x))

] ]
︸ ︷︷ ︸

We can focus on this part only
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Pointwise analysis 1/2

Assumption
We assume the class of scoring function S is “rich enough”
(i.e. set of all measurable mappings)

Pointwise risk
Let x ∈ X such that p(x = x) > 0. We redefine the concept of (optimal)
surrogate/Bayes risk as follows:

r(w) = Ey|x=x [ ℓ0−1(y, w) ] r̃(w) = Ey|x=x [ ℓ̃(y, w) ]
r∗ = inf

w∈Rk
r(w) r̃∗ = inf

w∈Rk
r̃(w)

where w ∈ Rk should be interpreted as the output of the scoring function, i.e.
w = s(x).
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Classification calibration for binary classification

Surrogate losses
Let Y = {−1, 1}.
▶ Perceptron loss: ℓ̃perceptron(y , w) = max(0, −y × w)
▶ Hinge loss: ℓ̃hinge(y , w) = max(0, 1 − y × w)
▶ Squared hinge loss: ℓ̃s. hinge(y , w) = max(0, 1 − y × w)2

▶ Exponential loss: ℓ̃exp(y , w) = exp(−y × w)
▶ Negative log-likelihood (NLL): ℓ̃nll(y , w) = log(1 + exp(−y × w))
▶ Quadratic error (or squared error): ℓ̃quad.(y , w) = (y × w − 1)2

Classification calibration
All these surrogate losses are classification calibrated except the perceptron loss.
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Classification calibration for binary classification
Surrogate risk

r̃(w) = Ey|x=x [ ℓ̃(y, w) ]
= p(y = 1|x = x) × ℓ̃(1, w) + p(y = −1|x = x) × ℓ̃(−1, w)
= µ × ℓ̃(1, w) + (1 − µ) × ℓ̃(−1, w)

where µ = p(y = 1|x = x).
The optimal surrogate risk is:

r̃∗ = inf
w∈R

r̃(w) = inf
w∈R

µ × ℓ̃(1, w) + (1 − µ) × ℓ̃(−1, w)

Intuition
The surrogate loss ℓ̃ is classification calibrated if the minimzer w∗ satisfies:
▶ µ > 0.5 =⇒ w∗ ≥ 0 (the class 1 is the most probable class for input x)
▶ µ < 0.5 =⇒ w∗ < 0 (the class 1 is the most probable class for input x)
▶ µ = 0.5: this case is not important.
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Sufficient conditions in the binary case

Let ℓ̃ : {−1, 1} × R → R+ be a surrogate loss function that can be rewrittent as:

ℓ̃(y , w) = ϕ(yw)

where ϕ : R → R+ is function.
⇒ all previously presented binary loss function can be rewritten under this form.

Theorem
If ϕ is convex and differentiable at 0 with ϕ′(0) < 0,
then ℓ̃ is classification calibrated

Proof
See (Lin, 2004).
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Classification calibration for multiclass classification

Surrogate losses
Let Y = E (k).
▶ Hinge loss: ℓ̃hinge(y , w) = max

(
0, 1 − ⟨y , w⟩ + maxy ′∈E(k)\{y}⟨y ′, w⟩

)
▶ NLL: ℓ̃nll(y , w) = −⟨y , w⟩ + log

∑
i exp(wi)

Properties without proof
In the multiclass classification case:
▶ The hinge loss is not classification calibrated, see (Liu, 2007)
▶ The NLL loss is classification calibrated, see exercises
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Strictly proper losses 1/2
Probabilistic prediction model
▶ We saw that we can learn models that predict a probability distribution over

outputs, e.g. ps(y|x), where the s emphasize that this is the learned model
distribution, parameterized by the scoring function s.

▶ Classification calibration means the the most probable output in the data
distribution will also be the most probable output in the model distribution

▶ We may want a stronger property: that the two distributions are equal

Definition
Let p(y, x) be the data distribution and ps(y|x) the model distribution. In the
pointwise setting, a surrogate loss ℓ̃ is classification calibrated if and only if the
scoring function s∗ that minimizes the surrogate risk leads to a model distribution
equal to the data distribution:

∀y ∈ Y : ps∗(y = y |x = x) = p(y = y |x = x).
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Strictly proper losses 1/2

Remarks
▶ Strict properness implies classification calibration
▶ The support of the data distribution must be “representable” by the model

distribution
▶ The NLL loss is strictly proper for models whose probability parameters are

computed using the sigmoid/softmax function if the conditional data
distribution has full support.

30 / 32



Risk minimization decomposition
Practical issues
▶ We only have access to a finite training dataset
▶ The set of function S is not the set of all measurable mapping
▶ The learning algorithm may not find the optimal classifier s ∈ S,

i.e. the following problem may be solved approximately

s∗ ∈ arg min
s∈S

1
|D|

∑
(x,y)∈D

ℓ(y , s(x)),

or in other words, in practice the computed s∗ is not a minimizer.

Risk decomposition
Excess risk: r(s∗) − r∗ ≥ 0

Excess risk decomposition:
r(s∗) − r∗ = r(s∗) − inf

s∈S
r(s)︸ ︷︷ ︸

Estimation error

+ inf
s∈S

r(s) − r∗︸ ︷︷ ︸
Approximation error
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