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Linear models 1 / 3

Regression model
▶ Input: x ∈ Rd

▶ Output: y ∈ R
▶ Scoring function: sθ(x) = ⟨a, x⟩ + b,

parameters θ = (a, b) with a ∈ Rd and b ∈ R
▶ Prediction function: ŷ(w) = w

Loss functions for regressions
▶ Square error (or quadratic error): ℓ(y , w) = 1

2(y − w)2

▶ Absolute error: ℓ(y , w) = |y − w |
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Linear models 2 / 3
Binary classification model
▶ Input: x ∈ Rd

▶ Output: y ∈ {0, 1} or y ∈ [0, 1], for SVM is often easier to work with y ∈ {−1, 1}
▶ Scoring function: sθ(x) = ⟨a, x⟩ + b,

parameters θ = (a, b) with a ∈ Rd and b ∈ R
▶ Prediction function:

▶ Deterministic: ŷ(w) =
{

1 ifw ≥ 0,

0 otherwise
▶ Probabilistic: ŷ(w) = σ(w) = exp(w)

1+exp(w)

Loss functions for binary classification
▶ Hinge loss: ℓ(y , w) = max(0, 1 − (2y − 1)w)
▶ Negative log-likelihood: ℓ(y , w) = −wy + log(1 + exp(w))
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Linear models 3 / 3

Multiclass classification model, k classes
▶ Input: x ∈ Rd

▶ Output: y ∈ E (k) or y ∈ △(k)
▶ Scoring function: sθ(x) = Ax + b,

parameters θ = (A, b) with A ∈ Rk×d and b ∈ Rk

▶ Prediction function:
▶ Deterministic: ŷ(w) = arg maxy∈E(k)⟨w , y⟩
▶ Probabilistic: ŷ(w) = softmax(w)

Loss functions for multiclass classification
▶ Hinge loss: ℓ(y , w) = max(0, 1 − ⟨w , y⟩ maxy ′∈E(y)\y⟨w , y ′⟩)
▶ Negative log-likelihood: ℓ(y , w) = −⟨w , y⟩ + log

∑
i exp(wi)
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Linear model training 1 / 2
Data distribution
We denote p(x, y) the data distribution where:
▶ x: random variables over inputs
▶ y: random variables over outputs

Training problem
Find the model parameters that minimize the expected loss of the data distribution:

min
θ

Ep(x,y)[ ℓ(y, sθ(x)) ] + αr(θ)

▶ ℓ: loss function
▶ r : regularization function, usually not applied to all parameters in θ

(i.e. not applied to the bias/intercept term)
▶ α ≥ 0: regularization weight
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Linear model training 2 / 2
Monte-Carlo estimation
We approximate the true expected loss using samples from the data distribution:

Ep(x,y)[ ℓ(y, sθ(x)) ] ≃ 1
|D|

∑
(x,y)∈D

ℓ(y , sθ(x))

where the training dataset D contains |D| samples from the data distribution.

Convexity
If
▶ the scoring function is linear
▶ the loss is convex
▶ the regularization function is convex

then the training problem object is convex.
=⇒ you have all the tools to prove this! (be very careful with the scoring function)
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Generic optimization problem 1/2
Reweighting
Sometimes it is easier to absord the 1

|D| factor in the regularization weight:

arg min
θ

1
|D|

∑
(x,y)∈D

ℓ(y , sθ(x)) + αr(θ)

= arg min
θ

∑
(x,y)∈D

ℓ(y , sθ(x)) + |D|α︸ ︷︷ ︸
new reg.
weight

r(θ)

Generic problem
Let f : Rn → R ∪ {∞} and h : Rn → R ∪ {∞} be two convex functions.

min
u∈dom f

f (u) or min
u∈dom f ∩dom h

f (u)+h(u) or min
u∈dom f ∩dom h

f (Mu)+h(u)
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Generic optimization problem 2/2

Fenchel duality
Let f : Rn → R ∪ {∞} and h : Rn → R ∪ {∞} be two convex functions,
and consider the following optimization problem:

min
u∈Rn

f (Mu) + h(u)

The Fenchel dual is defined as:

≥ max
λ∈Rm

−f ∗(λ) − h∗(−M⊤λ)

Primal-dual relationship
To recover primal variable values from the dual variables,
use the stationarity KKT condition of the primal problem.
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Gradient descent
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Generic optimization problem
Let’s consider the following optimization problem:

min
u∈Rn

f (u)

where f : Rn → R ∪ {∞} is a proper, closed and convex function.

Gradient descent algorithm
Assume f is differentiable everywhere in its domain. The gradient descent algorithm is
an iterative optimization algorithm that searches for the minimum of f by considering
a sequence of points as follows:

u(t+1) = u(t) − ϵ(t)∇f (u(t))

▶ ϵ(t) is the stepsize at time step t
▶ initial point x(0) ∈ dom f can be chosen randomly
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Why does it work?
Theorem: Descent direction
Let u be a non optimal point, i.e. ∇f (u) ̸= 0.
Then, there exist ϵ such that:

f (u − ϵ∇f (u)) < f (u)

We say that −∇f (u) is a descent direction.
Proof: See [Boyd et al., 2004, Sections 9.2 and 9.3] and [Beck, Lemma 5.7]

Stepsize
How to choose the stepsize?
▶ line search: (approximately) search for the best stepsize,

i.e. solve ϵ(t) = arg minϵ>0 f (x(t) − ϵ∇f (x(t)))
▶ constant stepsize
▶ diminishing stepsize: start with a given stepsize and decrease its value each t

steps or according to the function evaluation / dev data evaluation
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Stochastic gradient descent 1 / 3
Let’s consider the following optimization problem:

min
u∈Rn

1
n

n∑
i=1

fi(u)

where ∀i ∈ {1...n}, fi : Rn → R ∪ {∞} is a set of proper closed convex functions,
we assume the intersection of their domain is a non-empty convex set.

In stochastic gradient descent, at each step the gradient is approximated using a
subset of the functions fi :

u(t+1) = u(t) − ϵ(t)

|I(t)|
∑

i∈I(t)
∇fi(u)

where I(t) ⊆ {1...n} is the subset of indices used at step t.
=⇒ the subset of should consist of uniformly sampled indices!
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Stochastic gradient descent 2 / 3
Machine learning application
We call I(t) a mini-batch and it consists of a subset of the training data.

min
θ

1
|D|

∑
(x,y)∈D

ℓ(y , sθ(x))

︸ ︷︷ ︸
Approximate this term

using a subset of datapoints

+ αr(θ)

Two approaches
▶ Sampling with replacement: at each step, randomly choose a subset of datapoints
▶ Sampling without replacement: optimization is based on a sequence of epochs

▶ randomly choose of subset of datapoints that you did not see in the current epoch
yet

▶ an epoch is over when you saw all datapoints
=⇒ Sampling without replacement is standard in ML
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Stochastic gradient descent 3 / 3
# Loop over epoch
for epoch in range(num_epochs):

random.shuffle(training_data)

# Loop over minibatches
for i in range(0, len(training_data), minibatch_size):

minibatch = training_data[i : i + minibatch_size]

optimization_step(minibatch)

# Evaluate on dev data
evaluate_on_dev()

Other tricks:
▶ Save the model that obtain the best results on dev
▶ Control stepsize thanks to dev results
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Subgradient descent
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Subgradient descent 1 / 3
Non-differentiable functions
▶ Hinge loss: ℓ(y , w) = max(0, 1 − (2y − 1)w)
▶ L1 regularization: r(a) =

∑
i |ai |

Subgradient descent algorithm
Assume f : Rn → R ∪ {∞} is proper, closed and convex, but non-differentiable.

min
u∈Rn

f (u)

The SUBgradient descent algorithm is an iterative optimization algorithm that
searches for the minimum of f by considering a sequence of points as follows:

u(t+1) = u(t) − ϵ(t)g (t)

where g (t) ∈ ∂f (u(t)) is a subgradient of f at u(t).
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Subgradient descent 2 / 3
The subgradient is not a descent direction.

Let f : R2 → R be the function f (u) = |u1| + 2|u2|, ϵ > 0 and

u =
[
1
0

]
g =

[
1
2

]
∈ ∂f (u)

f (u) = |u1| + 2|u2|
= |1| + 2|0|
= 1

f (u − ϵg) = |u1 − ϵg1| + 2|u2 − ϵg2|
= |1 − ϵ1| + 2|0 − ϵ2| = |1 − ϵ| + |4ϵ|

Note that |a + b| ≤ |a| + |b|, therefore:

≥ |1 − ϵ + 4ϵ| = |1 + 3ϵ|

Therefore we have ∀ϵ > 0 : f (u − ϵg) ≥ |1 + 3ϵ| > f (u).
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Subgradient descent 2 / 3

Is this an issue?
▶ Subgradient is not a descent direction, but we can show that we still can get

closer to optimal solutions
▶ Work in many setting
▶ Not so good for L1 regularization, may (will?) “zig-zag” around solutions with

null parameters
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Proximal method
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Proximal method
Let
▶ f : Rn → R be a proper, closed, convex and differentiable function,
▶ g : Rn → R be a proper, closed, convex and non-differentiable function.

And consider a problem of the form:
min
u∈Rn

f (u) + h(u)

Proximal method
The proximal method is an iterative optimization algorithm that searches for the
minimum of f by considering a sequence of points as follows:

u(t+1) = proxh
(

u(t) − ϵ(t)∇f (u(t))
)

where proxh is the proximal operator of h defined as:

proxh(u) = arg min
u′∈Rd

1
2∥u − u′∥2

2 + h(u′)
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Properties of the proximal operator 1/2

Additively separable functions
Let f : Rn → R ∪ {∞} be a proper closed convex function defined as follows:

f (u) =
∑

i
fi(ui).

Then, the proximal operator of f is defined as:

proxf (u) =


proxf1(u1)
proxf2(u1)

...
proxfn(un)


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Properties of the proximal operator 2/2

Scaling
Let h : Rn → R ∪ {∞} be a proper closed convex function and f a function defined as:

f (u) = λh(λ−1u)

with λ > 0. Then, the proximal operator of f is defined as:

proxf (u) = λ proxλ−1g(λ−1u)
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Application
Linear regression with L1 regularization:

min
a,b

1
|D|

∑
(x,y)∈D

1
2(y − ⟨a, x⟩ − b)2

︸ ︷︷ ︸
differentiable

+ α
∑

i
|ai |︸ ︷︷ ︸

non-differentiable
but separable!

=⇒ can be minimized via proximal method!

The soft-thresholding operator
Let f : R → R be the absolute value function, i.e. f (u) = |u|.
The proximal operator of αf with α > 0 is defined as:

proxλf (u) =


u − α if u > α,

0 if u ∈ [−α, α],
u + α if u < α

= max(0, |u| − α) × sign(u)

23 / 37



Application
Linear regression with L1 regularization:

min
a,b

1
|D|

∑
(x,y)∈D

1
2(y − ⟨a, x⟩ − b)2

︸ ︷︷ ︸
differentiable

+ α
∑

i
|ai |︸ ︷︷ ︸

non-differentiable
but separable!

=⇒ can be minimized via proximal method!

The soft-thresholding operator
Let f : R → R be the absolute value function, i.e. f (u) = |u|.
The proximal operator of αf with α > 0 is defined as:

proxλf (u) =


u − α if u > α,

0 if u ∈ [−α, α],
u + α if u < α

= max(0, |u| − α) × sign(u)

23 / 37



Projected gradient descent 1 / 2

Let f : Rn → R be a differentiable function, S a convex set and consider the following
optimization problem:

min
u∈Rd

f (u) + δS(u) where δS(u) =
{

0 if u ∈ S,

+∞ otherwise.

Note that the proximal operator of the indicator function of S is the projection
function:

projδS (u) = arg min
u′∈Rd

∥u − u′∥ + δS(u′) = arg min
u′∈S

∥u − u′∥ = projj(u)
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Projected gradient descent 2 / 2
Let
▶ f : Rn → R be a proper, closed, convex and differentiable function,
▶ S be a convex set

And consider a problem of the form: minu∈S f (u)

Projected gradient descent
The projected gradient descent is an iterative optimization algorithm that searches for
the minimum of f by considering a sequence of points as follows:

u(t+1) = projS
(

u(t) − ϵ(t)∇f (u(t))
)

It is a special case of the proximal method.

Non-differentiable objective
If f is non-differentiable, a similar approach is called the projected SUBgradient
descent algorithm.
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Coordinate descent
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Coordinate descent

Motivations
All these algorithms require a stepsize, which may be difficult to tune.
Is there any method that does not depend on a stepsize?
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Let f : Rn → R be a proper, closed, convex and differentiable function. Assume a
problem of the form:

min
u∈Rn

f (u)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:

u(t+1)
1 ∈ arg min

u1∈R
f ( [ u1, u(t)

2 , u(t)
3 , ..., u(t)

n−1, u(t)
n ]⊤ )

u(t+1)
2 ∈ arg min

u2∈R
f ( [ u(t+1)

1 , u2, u(t)
3 , ..., u(t)

n−1, u(t)
n ]⊤ )

u(t+1)
3 ∈ arg min

u3∈R
f ( [ u(t+1)

1 , u(t+1)
2 , u3, ..., u(t)

n−1, u(t)
n ]⊤ )

...

u(t+1)
n−1 ∈ arg min

un−1∈R
f ( [ u(t+1)

1 , u(t+1)
2 , u(t+1)

3 , ..., un−1, u(t)
n ]⊤ )

u(t+1)
n ∈ arg min

un∈R
f ( [ u(t+1)

1 , u(t+1)
2 , u(t+1)

3 , ..., u(t+1)
n−1 , un ]⊤ )

Or any other order, as long as you directly use the new value for the next coordinate.
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Coordinate descent for non smooth objective

Let f : Rd → R ∪ {∞} and h : Rd → R ∪ {∞} be proper, closed and convex functions
such that:
▶ f is differentiable
▶ h is not differentiable but additively separable,

i.e. can be writted as h(u) =
∑

i hi(ui)
Then, the following problem:

min
u∈Rd

f (u) + h(u)

can be solved via coordinate descent.

WARNING: the condition the h is additively separable is very important!
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SVM dual optimization
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SVM dual objective
From last week course, remember that the SVM dual objective is devined as

max
λ

−
n∑

i=1
λi − 1

2λ⊤YXX⊤Y λ

s.t. − 1 ≤ λi ≤ 0 ∀1 ≤ i ≤ n

where
▶ X ∈ Rn×d : matrix where each row consists of a training point, i.e. Xi ,j = x (i)

j

▶ Y ∈ Rn×n: diagonal matrix containing labels, i.e. Yi ,i = y (i) and ∀i ̸= j : Yi ,j = 0.

Primal-dual relationship
To get back the primal variable values from the dual variables:

a = −X⊤Y λ
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Project gradient ascent 1/2
Objective function:

f (λ) = −
n∑

i=1
λi − 1

2λ⊤YXX⊤Y λ

Project gradient ascent step

λ(t+1) = proj[−1,0]n
[
λ(t) + ϵ∇f (λ(t))

]
where proj is the projection operator.

Projection
Project into the convex set [−1, 0]n => clip each coordinate to [−1, 0], i.e.:

Clip[0,1](w) =


−1 if w ≤ −1
0 if w ≥ 0
w otherwise
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Project gradient ascent 2/2

Objective function:

f (λ) = −
n∑

i=1
λi − 1

2λ⊤YXX⊤Y λ

Gradient

∇f (λ(t)) = −1 − 1
2

(
Y ⊤XX⊤Y +

(
Y ⊤XX⊤Y

)⊤
)

λ(t)

= −1 − Y ⊤XX⊤Y λ(t)

See Equation 97 in the Matrix Cookbook.
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Quadratic program
Box constrained quadratic problem

max
λ

1
2λ⊤Q λ + b⊤λ

s.t. l ≤ λ ≤ u

▶ Q ∈ Rn×n symmetric matrix of weights associated with quadratic term
▶ b ∈ Rn weights associated with linear term

SVM dual problem
▶ Q = −YXX⊤Y
▶ b = −1
▶ l = −1 and u = 0.
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Coordinate ascent

max
λ

1
2λ⊤Q λ + b⊤λ

s.t. l ≤ λ ≤ b

Main idea
Iteratively solve the problem wrt to one single element (coordinate) of λ only:
▶ For a given index k, solve ∂

∂λk
f (λ) = 0

▶ If the solution does not satisfy the constraints, clip it.

Notes
▶ when you solve for one coordinate, you immediately use the new coordinate

solution for the next coordinate!
▶ coordinates may be visited in any order.

35 / 37



Coordinate ascent step 1/2
Rewrite the objective as:

f (λ) = 1
2λ⊤Qλ + b⊤λ

= 1
2

n∑
i=1

λi

n∑
j=1

λjQj,i +
n∑

i=1
biλi

= 1
2

n∑
i=1

n∑
j=1

λiλjQj,i +
n∑

i=1
biλi

= 1
2

∑
i ̸=j

λiλjQj,i + 1
2

∑
i

λ2
i Qi ,i +

n∑
i=1

biλi

whose partial derivative is:

∂

∂λk
f (λ) =

∑
i ̸=k

λiQk,i + λkQk,k + bk
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Coordinate ascent step 2/2
Partial derivative of the objective:

∂

∂λk
f (λ) =

∑
i ̸=k

λiQk,i + λkQk,k + bk

Solving for the derivate equals to zero gives:∑
i ̸=k

λiQk,i + λkQk,k + bk = 0

λk =
−bk −

∑
i ̸=k λiQk,i

Qk,k

Therefore, solving for coordinate k is simply setting:

λk = Clip[l ,b]

[
−bk −

∑
i ̸=k λiQk,i

Qk,k

]
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