Machine Learning Algorithms - Optimization algorithms

Caio Corro

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique,
91400, Orsay, France

Linear models 1 / 3

Regression model
» Input: x € R?
» Output: y € R

» Scoring function: sg(x) = (a, x) + b,
parameters @ = (a, b) with a € R? and b € R

» Prediction function: y(w) = w

Loss functions for regressions

> Square error (or quadratic error): £(y,w) = (y — w)?
» Absolute error: {(y,w) = |y — w|

2/37

Linear models 2 / 3

Binary classification model

» Input: x € R?

» Output: y € {0,1} or y € [0, 1], for SVM is often easier to work with y € {—1,1}

» Scoring function: sp(x) = (a,x) + b,
parameters 6 = (a, b) with a € R? and b € R
» Prediction function:
ifw >
» Deterministic: y(w) = L ffw > (_)’
0 otherwise

» Probabilistic: y(w) = o(w) = 11)21(;&)

Loss functions for binary classification
» Hinge loss: ¢(y,w) = max(0,1— (2y — 1)w)
» Negative log-likelihood: ¢(y, w) = —wy + log(1 + exp(w))

3/37

Linear models 3 / 3

Multiclass classification model, k classes
» Input: x € R?
» Output: y € E(k) or y € A(k)
» Scoring function: sg(x) = Ax + b,
parameters 6 = (A, b) with A € R¥*9 and b € R¥
» Prediction function:

> Deterministic: y(w) = argmax, g (W, y)
» Probabilistic: y(w) = softmax(w)

Loss functions for multiclass classification
> Hinge loss: £(y, w) = max(0,1 — (w,y) max,cg(,), (W, y’))
» Negative log-likelihood: ¢(y, w) = —(w,y) + log > ; exp(w;)

4/37

Linear model training 1 / 2

Data distribution
We denote p(x,y) the data distribution where:
» x: random variables over inputs

» y: random variables over outputs

5/37

Linear model training 1 / 2

Data distribution
We denote p(x,y) the data distribution where:
» x: random variables over inputs

» y: random variables over outputs

Training problem

Find the model parameters that minimize the expected loss of the data distribution:

i Bl (o50()]+ ar(0)

» /: loss function

» r: regularization function, usually not applied to all parameters in 0
(i.e. not applied to the bias/intercept term)

> « > 0: regularization weight

5/37

Linear model training 2 / 2

Monte-Carlo estimation
We approximate the true expected loss using samples from the data distribution:

Epel £y 50(x)] = ,}) S Uy, so(x)
(x,y)eD

where the training dataset D contains |D| samples from the data distribution.

6/37

Linear model training 2 / 2

Monte-Carlo estimation
We approximate the true expected loss using samples from the data distribution:

Epel £y 50(x)] = ,[1) S Uy, so(x)

(x,y)eD
where the training dataset D contains |D| samples from the data distribution.

Convexity
If
» the scoring function is linear
» the loss is convex
» the regularization function is convex

then the training problem object is convex.
= you have all the tools to prove this! (be very careful with the scoring function)

6/37

Generic optimization problem 1/2

Reweighting

Sometimes it is easier to absord the ﬁ factor in the regularization weight:

arg min 1 > Uy.se(x) + ar(d)
o Dl en
= argmin Z Uy,so(x)) + |Dla r(6)
0 (x,y)eD n:vvfr:g.

7/37

Generic optimization problem 1/2

Reweighting

Sometimes it is easier to absord the ﬁ factor in the regularization weight:

arg min 1 > Uy.se(x) + ar(d)
o Dl en
= argmin Z Uy,so(x)) + |Dla r(6)
0 (x,y)eD n:vvfr.e/g.

Generic problem
Let f : R" - RU{oo} and h: R"” — R U {co} be two convex functions.

min f(u) or f(u)+h(u) or min f(Mu)+h(u)

min
uedom f ucdom fNdom h uedom fNdom h

7/37

Generic optimization problem 2/2

Fenchel duality

Let f : R" - RU{oo} and h: R" — R U {co} be two convex functions,
and consider the following optimization problem:

min, f(Mu) + h(u)

The Fenchel dual is defined as:

> o A Tan Yy
> max *(N) —h" (=M " X)

Primal-dual relationship

To recover primal variable values from the dual variables,
use the stationarity KKT condition of the primal problem.

8/37

Gradient descent

9/37

Generic optimization problem

Let's consider the following optimization problem:

s)

where f : R” — R U {co} is a proper, closed and convex function.

Gradient descent algorithm

Assume f is differentiable everywhere in its domain. The gradient descent algorithm is
an iterative optimization algorithm that searches for the minimum of f by considering
a sequence of points as follows:

D) = () _ (Og ()

» () is the stepsize at time step t

> initial point x(®) € dom f can be chosen randomly

10/37

Why does it work?

Theorem: Descent direction
Let u be a non optimal point, i.e. Vf(u) # 0.
Then, there exist € such that:

f(u—eVi(u)) < f(u)

We say that —Vf(u) is a descent direction.
Proof: See [Boyd et al., 2004, Sections 9.2 and 9.3] and [Beck, Lemma 5.7]

11/37

Why does it work?

Theorem: Descent direction
Let u be a non optimal point, i.e. Vf(u) # 0.
Then, there exist € such that:

f(u—eVi(u)) < f(u)

We say that —Vf(u) is a descent direction.
Proof: See [Boyd et al., 2004, Sections 9.2 and 9.3] and [Beck, Lemma 5.7]
Stepsize
How to choose the stepsize?
» line search: (approximately) search for the best stepsize,
i.e. solve () = argmin .o f(x(1) — eVF(x(¥)))
» constant stepsize

» diminishing stepsize: start with a given stepsize and decrease its value each t

steps or according to the function evaluation / dev data evaluation
11/37

Stochastic gradient descent 1 / 3

Let's consider the following optimization problem:

1 n
in =Y f
i 2 i)

where Vi € {1...n},f; : R" — RU {00} is a set of proper closed convex functions,
we assume the intersection of their domain is a non-empty convex set.

In stochastic gradient descent, at each step the gradient is approximated using a
subset of the functions f;:

0
> Vii(u)

u u
|I(t)‘ i€l(t)

where I(t) C {1...n} is the subset of indices used at step t.
= the subset of should consist of uniformly sampled indices!

12/37

Stochastic gradient descent 2 / 3

Machine learning application
We call I(t) a mini-batch and it consists of a subset of the training data.

. 1
mn g X Hys() ¢ ar(o)
(x,y)eD

Approximate this term
using a subset of datapoints

Two approaches

» Sampling with replacement: at each step, randomly choose a subset of datapoints
» Sampling without replacement: optimization is based on a sequence of epochs

» randomly choose of subset of datapoints that you did not see in the current epoch
yet
» an epoch is over when you saw all datapoints

= Sampling without replacement is standard in ML

13/37

Stochastic gradient descent 3 / 3

Loop over epoch
for epoch in range(num_epochs):
random.shuffle(training data)

Loop over minibatches
for i in range(0, len(training_data), minibatch_size):
minibatch = training datal[i : i + minibatch_size]

optimization_step(minibatch)

Evaluate on dev data
evaluate_on_dev()

Other tricks:
» Save the model that obtain the best results on dev

» Control stepsize thanks to dev results

14/37

Subgradient descent

15/37

Subgradient descent 1 / 3

Non-differentiable functions
» Hinge loss: {(y,w) = max(0,1 — (2y — 1)w)
» L1 regularization: r(a) = Y_;|ai|

16/37

Subgradient descent 1 / 3

Non-differentiable functions
» Hinge loss: {(y,w) = max(0,1 — (2y — 1)w)
» L1 regularization: r(a) = Y_;|ai|

Subgradient descent algorithm
Assume f : R" — R U {oo} is proper, closed and convex, but non-differentiable.

o F(v)

The SUBgradient descent algorithm is an iterative optimization algorithm that
searches for the minimum of f by considering a sequence of points as follows:

(D) (8 _ (0g(0)

where g(t) € 9f(u(?)) is a subgradient of f at u(t).

16/37

Subgradient descent 2 / 3

The subgradient is not a descent direction.

Let f : R? — R be the function f(u) = |u1| + 2|uo|, € > 0 and

u= [(1)] g= E] € 0f(u)

17/37

Subgradient descent 2 / 3

The subgradient is not a descent direction.

Let f : R? — R be the function f(u) = |u1| + 2|uo|, € > 0 and
1 1
u= [0] g= [2] € 0f(u)

f(u) = |u1| + 2|us]
= 1] +2|0|
=1

17/37

Subgradient descent 2 / 3

The subgradient is not a descent direction.

Let f : R? — R be the function f(u) = |u1| + 2|uo|, € > 0 and

u= [(1)] g= E] € 0f(u)

f(u) = |u1] + 2wy f(u—eg)=|u — eg1| +2|uz — ega]
= |1 + 2|0 =1 —€l| +2|0 —€2| = |1 — €| + |4¢]
=1

Note that |a + b| < |a| + |b|, therefore:

> |1 — e+ 4e| = |1+ 3¢

Therefore we have Ve > 0 : f(u —eg) > |1 4 3¢| > f(u).

17/37

Subgradient descent 2 / 3

Is this an issue?

» Subgradient is not a descent direction, but we can show that we still can get
closer to optimal solutions

> Work in many setting

» Not so good for L1 regularization, may (will?) “zig-zag" around solutions with
null parameters

18/37

Proximal method

19/37

Proximal method
Let
> f:R"” — R be a proper, closed, convex and differentiable function,
» g :R" — R be a proper, closed, convex and non-differentiable function.
And consider a problem of the form:

52%[5" f(u) + h(u)

Proximal method
The proximal method is an iterative optimization algorithm that searches for the
minimum of f by considering a sequence of points as follows:

ut+Y = prox, (u® — OVF(u®))

where prox,, is the proximal operator of h defined as:

1
prox,(u) = arg min EHU — |3+ h(d)

/ d
u'€R 20/37

Properties of the proximal operator 1/2

Additively separable functions
Let f : R" — R U {oo} be a proper closed convex function defined as follows:

f(u) = Z f,(u,)
Then, the proximal operator of f is defined as:
prox; (u1)
proxs(u) = proxy, (us)
prox (u,)

21/37

Properties of the proximal operator 2/2

Scaling
Let h: R" — RU {00} be a proper closed convex function and f a function defined as:

f(u) = Ah(A"Lu)
with A > 0. Then, the proximal operator of f is defined as:

proxs(u) = A prox)_lg()_lu)

22/37

Application

Linear regression with L1 regularization:

. 1 2
min g 2 R~ (ax)—b)
(x,y)eD

differentiable

—> can be minimized via proximal method!

adajl
i

N—_——
non-differentiable
but separable!

23/37

Application

Linear regression with L1 regularization:

1 1

mn 5 2 30 —{ax)-b)? 4+ e} lal
7 (X7Y)€D i
N——
differentiable non-differentiable

but separable!
—> can be minimized via proximal method!

The soft-thresholding operator

Let f : R — R be the absolute value function, i.e. f(u) = |u|.
The proximal operator of af with o > 0 is defined as:

u—a if u> a,
Proxs(,) = 4 0 if ue[-a,a], =max(0,|u] —«) x sign(u)
u+a if u<a

23/37

Projected gradient descent 1 / 2

Let f : R” — R be a differentiable function, S a convex set and consider the following
optimization problem:

0 ifues,

+00 otherwise.

urrew]igd fluy + 0s(u) where (55(u)—{

24 /37

Projected gradient descent 1 / 2

Let f : R” — R be a differentiable function, S a convex set and consider the following
optimization problem:

0 ifues,

+00 otherwise.

urrew]ilgj fluy + 0s(u) where (55(u)—{

Note that the proximal operator of the indicator function of S is the projection
function:

proj; (u) = argmin|u—d'|+ds(u') = argminfu—d'| = proj(u)
u'eRd u'es

24/37

Projected gradient descent 2 / 2
Let
> f:R"” — R be a proper, closed, convex and differentiable function,
» S be a convex set

And consider a problem of the form: minyes f(u)

25 /37

Projected gradient descent 2 / 2
Let
> f:R"” — R be a proper, closed, convex and differentiable function,
» S be a convex set
And consider a problem of the form: minyes f(u)
Projected gradient descent

The projected gradient descent is an iterative optimization algorithm that searches for
the minimum of f by considering a sequence of points as follows:

u(tth) = projs (ul®) — e(t)Vf(u(t)))
It is a special case of the proximal method.

Non-differentiable objective

If f is non-differentiable, a similar approach is called the projected SUBgradient
descent algorithm.

25 /37

Coordinate descent

26/37

Coordinate descent

Motivations
All these algorithms require a stepsize, which may be difficult to tune.
Is there any method that does not depend on a stepsize?

27 /37

Let f : R" — R be a proper, closed, convex and differentiable function. Assume a

problem of the form:

in f
g, F(e)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:
t+1 . t t t T
ug) € argnﬂwgln ([u, ug), ug),..., u,(7_)1, uf,t) 1)
me

28/37

Let f : R" — R be a proper, closed, convex and differentiable function. Assume a

problem of the form:

in f
g, F(e)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:
ugtH) € argminf([u, uét), ugt),..., u,(7t_)1, uf,t) 1)
um eR
ugtﬂ) € argminf(| ugtﬂ), uy, ugt),..., UI(BI, u,(,t) 1)
uweR

28/37

Let f : R" — R be a proper, closed, convex and differentiable function. Assume a

problem of the form:

in f
g, F(e)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:

u§t+1) c
u§t+1) c
u§t+1) c

argmin f([vy, uét), ugt), - u,(7t_)1, uf,t)]T)
um eR

argmin f(| ugtﬂ), Uy, ugt),..., UI(BI, u® 1)
uwEeR

argmin f(| ugt“), ugtﬂ), us, ..., uf,tjl, uf,t)]T)

uzeR

28/37

Let f : R" — R be a proper, closed, convex and differentiable function. Assume a

problem of the form:

in f
s)

The coordinate descent algorithm is an iterative optimization algorithm that searches
for the minimum of f by considering a sequence of points as follows:

ugtH) € argénRin f([u, uét), ugt), ey u,(7t_)1, u® 1)
up
ugtﬂ) € argénRin (] ugtﬂ), U, ugt), ey u,(f,)l, u® 1)
u2
Ugﬁ-l) < ari?Rin (I u£t+1)v u§t+1)v uz, .- UEBp ugt)]T)
uf,t_ll) € arg m;g (] ugtﬂ), uét—H), u§t+1), o tn-1,u$D 7))
ugt+1) € au:glr:in ([ugtﬂ), ugtH), ugtﬂ), - ,(,tjll)a un ")
up€R

Or any other order, as long as you directly use the new value for the next coordinate.

28/37

Coordinate descent for non smooth objective

Let f : R - RU{oco} and h: RY — R U {cc} be proper, closed and convex functions
such that:

» f is differentiable

» his not differentiable but additively separable,
i.e. can be writted as h(u) = >, hi(u;)

Then, the following problem:

min f(u) + h(u
ucRd () ()
can be solved via coordinate descent.

WARNING: the condition the h is additively separable is very important!

29 /37

SVM dual optimization

30/37

SVM dual objective

From last week course, remember that the SVM dual objective is devined as

n
1
~ N = 2ATYXXTya
m)?x ; i 2
st. —1<X, <0 Vi<i<n

where

» X € R™9: matrix where each row consists of a training point, i.e. Xj; = ><j(")

» Y € R™": diagonal matrix containing labels, i.e. Yj; = y() and Vi # j Yij=0.

Primal-dual relationship

To get back the primal variable values from the dual variables:

a=-X"Y\

31/37

Project gradient ascent 1/2

Objective function:
n

1
FA) == Ai— §AT YXX' Y\
i=1

Project gradient ascent step

AL — Proji_1 o [)\(t) o er(/\(t))}
where proj is the projection operator.
Projection

Project into the convex set [—1,0]" => clip each coordinate to [—1,0], i.e.:

-1 ifw<-1

w otherwise

32/37

Project gradient ascent 2/2

Objective function:
n

1
FA)==>_ Ai— EAT YXXT Y
i=1

Gradient

viA®) = —1— % (YTxxTY + (YTxxT Y)T> A

= 1-Y'XxXxXTy\®

See Equation 97 in the Matrix Cookbook.

33/37

Quadratic program

Box constrained quadratic problem

1
max A QA+b')\
A 2

st. 1< A<u

> Q € R™" symmetric matrix of weights associated with quadratic term

> b € R" weights associated with linear term

SVM dual problem
> Q=-YXX'Y
> b=—1
» /=—1and u=0.

34/37

Coordinate ascent

1
max -A QAN+b')\
A 2

st. I1<ALb

Main idea

Iteratively solve the problem wrt to one single element (coordinate) of A only:
» For a given index k, solve 8%,(1‘()\) =0

» If the solution does not satisfy the constraints, clip it.

Notes

» when you solve for one coordinate, you immediately use the new coordinate
solution for the next coordinate!

P coordinates may be visited in any order.

35/37

Coordinate ascent step 1/2
Rewrite the objective as:

F(A\) = %)\TQ)\erT)\
= ;ZA,ZAJ-QL,-JFZ:W,
—ZZA)\QJ,+Zb)\

i=1j=1

ZMQJ,+ ZA2Q,,+ZM-

l;éJ
whose partial derivative is:

0

37/\1('(()\) =3 NiQui + Mk Quk + b

ik

36/37

Coordinate ascent step 2/2
Partial derivative of the objective:

0
Wf()\) = Z AiQr,i + M Qr i + bi
k ik

Solving for the derivate equals to zero gives:
D XiQui + Mk Quek + b =0
ik
—br — Dk Ni Qi
Ak =
Qx K

Therefore, solving for coordinate k is simply setting:

_bk - Zi;ﬁk /\iQk,i
Qk K

Ak = Clipy p)

37/37

	Gradient descent
	Subgradient descent
	Proximal method
	Coordinate descent
	SVM dual optimization

