
Learning Latent Trees with Stochastic Perturbations
and Differentiable Dynamic Programming

Caio Corro, Ivan Titov
ILCC, School of Informatics, University of Edinburgh ILLC, University of Amsterdam

Ed nburgh
NLPUniversity of Edinburgh

Natural Language Processing

Projective Dependency Tree
We are interested in latent projective dependency trees that implicitly
encode hierarchical decomposition of a sentence into spans.

* We do n’t loan a lot of money .

Distribution over Trees

p(T |x) =
∑h,m Th,m × Wh,m

Z(T, x)

T : boolean adjacency matrix,
 i.e iff arc is in the tree

W : matrix of arc weights computed with a NN

The probability distribution over dependency trees is a log-linear
model factored over arc weights.

Latent Variable Models
Supervised learning can be understood as inferring the probability
distribution corresponding to a directed graphical model.

x y } PredictionInput

}

Latent variables can model unobserved inter-dependencies or introduce
knowledge about the structure of a given problem.

} Latent variable, i.e. non
observable in the data

Training Loss

Unfortunately, exact marginalisation is intractable:

≥ 𝔼T∼p(T|x)[log p(y |T, x)]

log p(y |x) = log 𝔼T∼p(T|x)[p(y |T, x)]

= log ∑
T

p(T |x) × p(y |T, x)

Therefore, we derive a bound using Jensen’s inequality:

Which can be approximated via Monte-Carlo method.

We maximise the log-likelihood of training data via SGD:

Differentiable Dynamic Programming
The dynamic programming approach for parsing relies on recursive
calls to the one-hot-argmax op, which introduces ill-defined derivatives
during the backward pass. We replace one-hot-argmax ops with softmax
ops to smooth the optimization landscape.

�2

0

2

�2

0

2

0

0.5

1

�2

0

2

�2

0

2

0

0.5

1⇒

Contributions
1. We show that a latent tree model can be estimated by drawing

global approximate samples via Gumbel perturbation and
differentiable dynamic programming

2. We demonstrate that constraining the structures to be projective
dependency trees is beneficial

3. We show the effectiveness of our approach on two standard
tasks and on a synthetic dataset

Perturb-and-MAP

argmax
T∈𝒯(s) ∑

h,m

Th,m × W̃h,m

G ∼ 𝒢(0,1)

W̃ = W + G

} Solved with dynamic programming

} Arc weight perturbation with
Gumbel noise

[Eisner, 1996]

[Papandreou & Yuille, 2011]

Approximate sampling method for log-linear models:

Neural Architecture
A Graph Convolutional Network [Kipf and Welling, 2017] is used
to compute the sentence representation w.r.t. the dependency tree.

x1 x2 x3

WCompute arc weights

Graph Convolution and Pooling

Compute dependency tree T

Experimental Results

65

70

75

Latent heads Latent tree

73.2

68.7

71.9

69.0

65

70

75

Latent tree

73
71.5

68.1

No intra-att 1 GCN 2 GCN

82.5

85

SST results

84.6

83.8

83.1

Naive Bayes
CoreNLP
Latent tree

Experimentally, we observe that our Latent Tree (LT) model
improves comparable baselines on sentiment analysis with syntactic
trees predicted by CoreNLP and on Natural Language Inference
datasets.

MultiNLI ablation tests (dev) MultiNLI test results

x y

T

NWO VIDI 639.022.518
ERC BroadSem 678254

Acknowledgments

Th,m = 1 xh → xm

