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Natural Language Processing

Projective Dependency Tree
We are interested in latent projective dependency trees that implicitly 
encode hierarchical decomposition of a sentence into spans.

* We do n’t loan a lot of money .

Distribution over Trees

p(T |x) =
∑h,m Th,m × Wh,m

Z(T, x)

T : boolean adjacency matrix, 
  i.e                iff arc                is in the tree

W : matrix of arc weights computed with a NN

The probability distribution over dependency trees is a log-linear 
model factored over arc weights.

Latent Variable Models
Supervised learning can be understood as inferring the probability 
distribution corresponding to a directed graphical model.

x y } PredictionInput

}

Latent variables can model unobserved inter-dependencies or introduce 
knowledge about the structure of a given problem.

} Latent variable, i.e. non 
observable in the data

Training Loss

Unfortunately, exact marginalisation is intractable:

≥ 𝔼T∼p(T|x)[ log p(y |T, x) ]

log p(y |x) = log 𝔼T∼p(T|x)[ p(y |T, x) ]

= log ∑
T

p(T |x) × p(y |T, x)

Therefore, we derive a bound using Jensen’s inequality:

Which can be approximated via Monte-Carlo method.

We maximise the log-likelihood of training data via SGD:

Differentiable Dynamic Programming
The dynamic programming approach for parsing relies on recursive 
calls to the one-hot-argmax op, which introduces ill-defined derivatives 
during the backward pass. We replace one-hot-argmax ops with softmax 
ops to smooth the optimization landscape.
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Contributions
1. We show that a latent tree model can be estimated by drawing 

global approximate samples via Gumbel perturbation and 
differentiable dynamic programming 

2. We demonstrate that constraining the structures to be projective 
dependency trees is beneficial 

3. We show the effectiveness of our approach on two standard 
tasks and on a synthetic dataset

Perturb-and-MAP

argmax
T∈𝒯(s) ∑

h,m

Th,m × W̃h,m

G ∼ 𝒢(0,1)

W̃ = W + G

} Solved with dynamic programming

} Arc weight perturbation with 
Gumbel noise

[Eisner, 1996]

[Papandreou & Yuille, 2011]

Approximate sampling method for log-linear models:

Neural Architecture
A Graph Convolutional Network [Kipf and Welling, 2017] is used 
to compute the sentence representation w.r.t. the dependency tree.
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Experimental Results 
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Experimentally, we observe that our Latent Tree (LT) model 
improves comparable baselines on sentiment analysis with syntactic 
trees predicted by CoreNLP and on Natural Language Inference 
datasets.  

MultiNLI ablation tests (dev) MultiNLI test results
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Th,m = 1 xh → xm


