

BREGMAN CONDITIONAL RANDOM FIELDS: SEQUENCE LABELING WITH PARALLELIZABLE INFERENCE ALGORITHMS

Caio Corro¹, Mathieu Lacroix², Joseph Le Roux²

¹INSA Rennes, IRISA, Inria, CNRS, Université de Rennes, France ²Université Sorbonne Paris Nord, CNRS, LIPN, France

SEQUENCE LABELING

Problem

Given an input sequence, predict one output per element of the sequence, for example one tag per word of an input sentence.

➤ Part-of-speech tagging

PRP VB DET NN
They walk the dog

➤ Flat named-entity recognition with BIO tags

B-Per I-Per O O B-Loc
Neil Armstrong visited the moon

➤ Joint word segmentation and part-of-speech tagging with BIES tags

B-NN E-NN S-JJ B-CD E-CD B-NNB E-NNB S-, S-VC B-NNP I-NNP E-NNP B-JJ E-JJ B-NN E-NN S-DEC S-CD S-. 乐 章 长 廿 五 分 钟 , 为 贝 多 芬 最 长 乐 章 之 一 。

SEQUENCE LABELING

Problem

Given an input sequence, predict one output per element of the sequence, for example one tag per word of an input sentence.

➤ Part-of-speech tagging

PRP VB DET NN
They walk the dog

➤ Flat named-entity recognition with BIO tags

B-Per I-Per O O B-Loc
Neil Armstrong visited the moon

➤ Joint word segmentation and part-of-speech tagging with BIES tags

 B-NN
 E-NN
 S-JJ
 B-CD
 E-CD
 B-NNB
 E-NNB
 S-, S-VC
 B-NNP
 I-NNP
 E-NNP
 B-JJ
 E-JJ
 B-NN
 E-NN
 S-DEC
 S-CD
 S-.

 乐
 章
 长
 甘
 五
 分
 钟
 ,
 为
 贝
 多
 芬
 最
 长
 乐
 章
 之
 一
 。

Tags as Vertices

For each word, create one vertex per tag where vertex weights are neural network outputs.

Prediction / Decoding

Select on vertex per word.

Tags as Vertices

For each word, create one vertex per tag where vertex weights are neural network outputs.

.....

Transitions as Arcs

- ➤ arc weights are neural network outputs
- \blacktriangleright do not introduce arcs for forbidden tag transitions (or set its weight to $-\infty$)

.....

Transitions as Arcs

- ➤ arc weights are neural network outputs
- \blacktriangleright do not introduce arcs for forbidden tag transitions (or set its weight to $-\infty$)

Transitions as Arcs

- ➤ arc weights are neural network outputs
- \blacktriangleright do not introduce arcs for forbidden tag transitions (or set its weight to $-\infty$)

Transitions as Arcs

- > arc weights are neural network outputs
- \blacktriangleright do not introduce arcs for forbidden tag transitions (or set its weight to $-\infty$)

Sequence Labelings as Paths in the Viterbi Trellis

- ➤ A path from the source vertex to the target vertex represent a tagged sentence (1-to-1 correspondance)
- ➤ The prediction of the model is the path of maximum weight

Path Weighting

➤ Transition weight vector: (given by the neural net)

$$\mathbf{w}^{\mathsf{T}} = \begin{bmatrix} +4.23 & -3.16 & .. & +1.02 & .. & +5.36 & .. & +0.46 & .. & -3.67 & +0.60 & -1.64 \end{bmatrix}$$

Path Weighting

- ➤ Transition weight vector: (given by the neural net)
- ➤ Arc selection vectors: ({0,1} vectors)

Not all binary vectors are valid paths!

$$\mathbf{w}' = [+4.23 -3.16 .. +1.02 .. +5.36 .. +0.46 .. -3.67 +0.60 -1.64]$$

$$\mathbf{q}_1^\mathsf{T} = \begin{bmatrix} 1 & 0 & \cdots & 1 & \cdots & 1 & \cdots & 1 & \cdots & 0 & 0 \end{bmatrix}$$

The weight of a path is the inner product between the two vectors: $\langle \mathbf{w}, \mathbf{q} \rangle$

Path Weighting

- ➤ Transition weight vector: (given by the neural net)
- ➤ Arc selection vectors: ({0,1} vectors)

Not all binary vectors are valid paths!

$$\mathbf{w}^{\mathsf{T}} = \begin{bmatrix} +4.23 & -3.16 & ... & +1.02 & ... & +5.36 & ... & +0.46 & ... & -3.67 & +0.60 & -1.64 \end{bmatrix}$$

$$\mathbf{q}_1^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & \cdots & 1 & \cdots & 1 & \cdots & 1 & \cdots & 0 & 0 \end{bmatrix}$$
 $\mathbf{q}_1^{\mathsf{T}} = \begin{bmatrix} 0 & 1 & \cdots & 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}$

etc.

The weight of a path is the inner product between the two vectors: $\langle \mathbf{w}, \mathbf{q} \rangle$

Structure Encoding Matrix

Let M be a matrix s.t. each column encodes one path in the trellis.

Then $\mathbf{M}^{\mathsf{T}}\mathbf{w}$ is vector containing the weight of each path.

+4.23	W
-3.16	
•	
+1.02	
•	
+5.36	
•	
+0.46	
•	
-3.67	
+0.60	
1.64	

Structure Encoding Matrix

Let M be a matrix s.t. each column encodes one path in the trellis.

Then $\mathbf{M}^{\mathsf{T}}\mathbf{w}$ is vector containing the weight of each path.

+1.02 Weight of q₁

 $\mathbf{M}^{\mathsf{T}}\mathbf{w}$

Structure Encoding Matrix

Let M be a matrix s.t. each column encodes one path in the trellis.

Then $\mathbf{M}^{\mathsf{T}}\mathbf{w}$ is vector containing the weight of each path.

Weight of q₂

Structure Encoding Matrix

Let M be a matrix s.t. each column encodes one path in the trellis.

Then $\mathbf{M}^{\mathsf{T}}\mathbf{w}$ is vector containing the weight of each path.

Structure Encoding Matrix

Let M be a matrix s.t. each column encodes one path in the trellis. Then $\mathbf{M}^{\mathsf{T}}\mathbf{w}$ is vector containing the weight of each path.

Conditional Random Fields (CRF)

Distribution over sequence labelings defined as:

where the log-partition ensures that the distribution is well-defined:

$$A_{Y}(\mathbf{w}) = \log \sum_{i} \exp \left[\mathbf{M}^{\mathsf{T}} \mathbf{w} \right]_{i}$$

Structure Encoding Matrix

Let M be a matrix s.t. each column encodes one path in the trellis. Then $\mathbf{M}^{\mathsf{T}}\mathbf{w}$ is vector containing the weight of each path.

Conditional Random Fields (CRF)

Distribution over sequence labelings defined as:

$$p_{\theta}(\mathbf{q} \,|\, \mathbf{s}) = \exp\left(\,\, \langle \mathbf{q}, f_{\theta}(\mathbf{s}) \rangle \, - \, A_{Y}(f_{\theta}(\mathbf{s})) \,\,\right)$$
 Softmax over structures
$$\mathbf{f}_{\theta} \text{ is the neural net parameterized by } \mathbf{0}$$

where the log-partition ensures that the distribution is well-defined:

$$A_Y(\mathbf{w}) = \log \sum_i \exp \left[\mathbf{M}^\top \mathbf{w} \right]_i$$

Inference Problems

- ➤ MAP inference: compute the best sequence of tags (for prediction)
- Marginal inference:
 compute the log-partition function (for training, NLL loss)

Inference Algorithms

Via dynamic programming:

- ➤ Viterbi
- > Forward

Inference Problems

- ➤ MAP inference: compute the best sequence of tags (for prediction)
- ➤ Marginal inference: compute the log-partition function (for training, NLL loss)

Inference Algorithms

Via dynamic programming:

- ➤ Viterbi
- > Forward

These CRF algorithms cannot fully leverage parallelization capabilities of GPUs!!!

Conditional Random Fields (CRF)

The log-partition function of a CRF whose structure is encoded by matrix M is defined as follows:

$$A_{Y}(\mathbf{w}) = \log \sum_{i} \exp \left[\mathbf{M}^{\mathsf{T}} \mathbf{w} \right]_{i}$$
$$= \max_{\mathbf{p} \in \triangle_{Y}} \langle \mathbf{p}, \mathbf{M}^{\mathsf{T}} \mathbf{w} \rangle + H(\mathbf{p})$$

Distribution regularization via Shannon entropy

Conditional Random Fields (CRF)

The log-partition function of a CRF whose structure is encoded by matrix M is defined as follows:

$$A_{Y}(\mathbf{w}) = \log \sum_{i} \exp \left[\mathbf{M}^{\top} \mathbf{w} \right]_{i}$$
$$= \max_{\mathbf{p} \in \triangle_{Y}} \langle \mathbf{p}, \mathbf{M}^{\top} \mathbf{w} \rangle + H(\mathbf{p})$$

Setting $\mathbf{q} = \mathbf{M}\mathbf{p}$ and optimizing over $\mathbf{q} \in \{\mathbf{M}\mathbf{p} | \mathbf{p} \in \triangle_Y\} = \mathbf{conv} Y$

we obtain:

$$= \max_{\mathbf{q} \in \mathbf{conv}\,Y} \langle \mathbf{q}, \mathbf{w} \rangle - R(\mathbf{q})$$

Distribution regularization via Shannon entropy

Defined so equality holds

Conditional Random Fields (CRF)

The log-partition function of a CRF whose structure is encoded by matrix M is defined as follows:

$$A_{Y}(\mathbf{w}) = \log \sum_{i} \exp \left[\mathbf{M}^{\mathsf{T}} \mathbf{w} \right]_{i}$$
$$= \max_{\mathbf{p} \in \triangle_{Y}} \langle \mathbf{p}, \mathbf{M}^{\mathsf{T}} \mathbf{w} \rangle + H(\mathbf{p})$$

Setting $\mathbf{q} = \mathbf{M}\mathbf{p}$ and optimizing via Shar over $\mathbf{q} \in \{\mathbf{M}\mathbf{p} | \mathbf{p} \in \triangle_Y\} = \mathbf{conv}\,Y$

we obtain:

$$= \max_{\mathbf{q} \in \mathbf{conv}\,Y} \langle \mathbf{q}, \mathbf{w} \rangle - R(\mathbf{q})$$

Distribution regularization via Shannon entropy

Defined so equality holds

Bregman CRF

A Bregman CRF defines a probability distribution over sequence labeling whose marginal distribution is defined by:

$$B_{Y}(\mathbf{w}) = \max_{\mathbf{p} \in \triangle_{Y}} \langle \mathbf{p}, \mathbf{M}^{\top} \mathbf{w} \rangle + H(\mathbf{M}\mathbf{p})$$

Using the same change of variable, we obtain:

$$= \max_{\mathbf{q} \in \mathbf{conv} \, Y} \langle \mathbf{q}, \mathbf{w} \rangle + H(\mathbf{q})$$

Benefits

Mean regularization

- ➤ q is of polynomial size
- > can be rewritten as a KL projection!
- ➤ both approximate MAP and marginal inference reduce to the same algorithm

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 q∈conv Y

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \mathbf{conv} Y$

= argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$

 $\mathbf{q} \in C_1 \cap C_2$

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \mathbf{conv} Y$

= argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$

 $\mathbf{q} \in C_1 \cap C_2$

s.t. projection on C_1 (resp. C_2) is easy.

Constraints

At a given position, the following constraints must hold:

- ➤ Exactly one vertex is selected
- ➤ This vertex has exactly one incoming and one outgoing arc

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \mathbf{conv} Y$

= argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$

 $\mathbf{q} \in C_1 \cap C_2$

s.t. projection on C_1 (resp. C_2) is easy.

Constraints

At a given position, the following constraints must hold:

- ➤ Exactly one vertex is selected
- ➤ This vertex has exactly one incoming and one outgoing arc

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \operatorname{conv} Y$

= argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$

 $\mathbf{q} \in C_1 \cap C_2$

s.t. projection on C_1 (resp. C_2) is easy.

Constraints

At a given position, the following constraints must hold:

- ➤ Exactly one vertex is selected
- ➤ This vertex has exactly one incoming and one outgoing arc

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in \operatorname{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

s.t. projection on C_1 (resp. C_2) is easy.

Constraints related to even positions

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \operatorname{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in \mathbf{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

s.t. projection on C_1 (resp. C_2) is easy.

Constraints related to even positions

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \mathbf{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

s.t. projection on C_1 (resp. C_2) is easy.

Set of valid marginal distributions over path C_1 Constraints related to even positions C_2 Constraints related to odd positions

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \mathbf{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \operatorname{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \operatorname{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \mathbf{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

Optimization Problem

We decompose the KL projection into the projection into an intersection of sets:

argmin
$$D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$$
 $\mathbf{q} \in \operatorname{conv} Y$

= argmin $D_{KL}(\mathbf{q} \parallel \exp \mathbf{w})$ $\mathbf{q} \in C_1 \cap C_2$

BREGMAN CONDITIONAL RANDOM FIELDS Caio Corro, Mathieu Lacroix, Joseph Le Roux

Main takeway

GPUs allows to rethink well-known algorithms to propose better parallelizable alternatives

TL;DR

- ➤ Novel distribution over sequence labelings using mean regularization
- ➤ Novel inference algorithm based on iterative Bregman projections
- > Supervised and weakly-supervised learning using Fenchel-Young losses
- ➤ Many experimental results in the paper

GPUs GO BRRRRRR

Experimental Results

- ➤ Faster on GPU than standard CRF for training and prediction
- > Somewhat slower than mean field for decoding (2) but comparable speed for training (3)
- > Better results than mean field when there are hard structural constraints (i.e. forbidden transitions)
- ➤ Weakly-supervised learning scenario (not possible with mean field)

