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SEQUENCE LABELING
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They  walk  the  dog

PRP VB DET NN

Problem 
Given an input sequence, predict one output per element of the sequence, 
for example one tag per word of an input sentence.

➤ Part-of-speech tagging

Neil  Armstrong  visited  the  moon

B-Per I-Per O O B-Loc

➤ Flat named-entity recognition with BIO tags

➤ Joint word segmentation and part-of-speech tagging with BIES tags

乐 章 长 廿 五 分 钟 ，为 贝 多 芬 最 长 乐 章 之 一 。

B-NN E-NN S-JJ B-CD E-CD B-NNB E-NNB S-, S-VC B-NNP I-NNP

，

E-NNP B-JJ E-JJ B-NN E-NN S-DEC S-CD S-.
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GRAPH-BASED DECODING
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Neil

O

B-Loc

I-Loc

B-Per

I-Per

Tags as Vertices 
For each word, create one vertex per tag where vertex weights are neural network outputs.

Armstrong visited the moon.

Prediction / Decoding 
Select on vertex per word.

In practice we have 
way more tags
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Tags as Vertices 
For each word, create one vertex per tag where vertex weights are neural network outputs.

Armstrong visited the moon.

Red vertices are the best 
vertex for each word

Prediction / Decoding 
Select on vertex per word.

In practice we have 
way more tags
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Armstrong visited the moon.

Any tag can precede 
the O tag

Transitions as Arcs 
Add arcs between adjacent vertices: 
➤ arc weights are neural network outputs 
➤ do not introduce arcs for forbidden tag transitions (or set its weight to -∞)
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Armstrong visited the moon.

Same for a B tag

Transitions as Arcs 
Add arcs between adjacent vertices: 
➤ arc weights are neural network outputs 
➤ do not introduce arcs for forbidden tag transitions (or set its weight to -∞)
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Armstrong visited the moon.

But a I tag can only 
follow a B or I tag 

of same type!

Transitions as Arcs 
Add arcs between adjacent vertices: 
➤ arc weights are neural network outputs 
➤ do not introduce arcs for forbidden tag transitions (or set its weight to -∞)
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Add arcs between adjacent vertices: 
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Neil Armstrong visited the moon.

O
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Sequence Labelings as Paths in the Viterbi Trellis 
➤ A path from the source vertex to the target vertex represent a tagged sentence (1-to-1 correspondance) 
➤ The prediction of the model is the path of maximum weight
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Neil Armstrong visited the moon.

O

B-Loc

I-Loc

B-Per

I-Per

Path Weighting 
➤ Transition weight vector: 

(given by the neural net)
+4.23 -3.16 +1.02.. .. +5.36 +0.46.. -3.67 +0.60 -1.64..[ ]w⊤ =



GRAPH-BASED DECODING

7
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Path Weighting 
➤ Transition weight vector: 

(given by the neural net)
+4.23 -3.16 +1.02.. .. +5.36 +0.46.. -3.67 +0.60 -1.64..[ ]w⊤ =

1 0 1.. 1.. 1.. 0 0 0..[q⊤
1 = ]

⟨w, q⟩The weight of a path is the inner product between the two vectors:

➤ Arc selection vectors: 
({0,1} vectors)

Not all binary vectors 
are valid paths!
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⟨w, q⟩The weight of a path is the inner product between the two vectors:

➤ Arc selection vectors: 
({0,1} vectors)

0 1 0.. 1.. 0.. 0 1 0..[q⊤
2 = ]

etc.
Not all binary vectors 

are valid paths!
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Structure Encoding Matrix 
Let M be a matrix s.t. each column encodes one path in the trellis. 
Then            is vector containing the weight of each path.M⊤w

M⊤
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-3.67
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-1.64
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Let M be a matrix s.t. each column encodes one path in the trellis. 
Then            is vector containing the weight of each path.M⊤w
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Structure Encoding Matrix 
Let M be a matrix s.t. each column encodes one path in the trellis. 
Then            is vector containing the weight of each path.M⊤w

1 0 1.. 1.. 1.. 0 0 0.. +11.07M⊤

+4.23

-3.16

+1.02

.
.

+5.36

+0.46

-3.67

+0.60
-1.64

w

.
.

.
.

.
.

M⊤w
0 1 0.. 1.. 0.. 0 1 0.. +3.68

etc etc etc. etc.

q1

q2

Weight of q1 

Weight of q2



CONDITIONAL RANDOM FIELDS

9

Structure Encoding Matrix 
Let M be a matrix s.t. each column encodes one path in the trellis. 
Then            is vector containing the weight of each path.M⊤w

AY(w) = log∑
i

exp [M⊤w]i

Conditional Random Fields (CRF) 
Distribution over sequence labelings defined as:

where the log-partition ensures that the distribution 
is well-defined:

pθ(q |s) = exp ( ⟨q, fθ(s)⟩ − AY( fθ(s)) )

fθ is the neural net 
parameterized by θ

Softmax over 
structures



Inference Problems 
➤ MAP inference: 

compute the best sequence of tags (for prediction) 
➤ Marginal inference: 

compute the log-partition function (for training, NLL loss)

Inference Algorithms 
Via dynamic programming: 
➤ Viterbi 
➤ Forward
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Structure Encoding Matrix 
Let M be a matrix s.t. each column encodes one path in the trellis. 
Then            is vector containing the weight of each path.M⊤w

AY(w) = log∑
i

exp [M⊤w]i

Conditional Random Fields (CRF) 
Distribution over sequence labelings defined as:

where the log-partition ensures that the distribution 
is well-defined:

pθ(q |s) = exp ( ⟨q, fθ(s)⟩ − AY( fθ(s)) )

fθ is the neural net 
parameterized by θ

Softmax over 
structures

These CRF algorithms cannot fully leverage parallelization capabilities of GPUs!!!!
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= max
p∈△Y

⟨p, M⊤w⟩ + H(p)

AY(w) = log∑
i

exp [M⊤w]i

Conditional Random Fields (CRF) 
The log-partition function of a CRF whose structure 
is encoded by matrix M is defined as follows:

Distribution regularization 
via Shannon entropy
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Setting                and optimizing 
over 
we obtain:

q = Mp
q ∈ {Mp |p ∈ △Y } = conv Y

= max
q∈conv Y

⟨q, w⟩ − R(q) Defined so equality holds

= max
p∈△Y

⟨p, M⊤w⟩ + H(p)

AY(w) = log∑
i

exp [M⊤w]i

Conditional Random Fields (CRF) 
The log-partition function of a CRF whose structure 
is encoded by matrix M is defined as follows:

Distribution regularization 
via Shannon entropy
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= max
p∈△Y

⟨p, M⊤w⟩ + H(p)

AY(w) = log∑
i

exp [M⊤w]i

Conditional Random Fields (CRF) 
The log-partition function of a CRF whose structure 
is encoded by matrix M is defined as follows:

Distribution regularization 
via Shannon entropy

BY(w) = max
p∈△Y

⟨p, M⊤w⟩ + H(Mp)

= max
q∈conv Y

⟨q, w⟩ + H(q)

Bregman CRF 
A Bregman CRF defines a probability distribution 
over sequence labeling whose marginal distribution 
is defined by:

Using the same change of variable, we obtain:

Mean regularizationBenefits 
➤ q is of polynomial size 
➤ can be rewritten as a KL projection! 
➤ both approximate MAP and marginal inference 

reduce to the same algorithm

argmin
q∈conv Y

DKL(q ∥ exp w)
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argmin
q∈conv Y

DKL(q ∥ exp w)

1 2 3 4 5 6

= argmin
q∈C1∩C2

DKL(q ∥ exp w)

Optimization Problem 
We decompose the KL projection into the 
projection into an intersection of sets:

s.t. projection on C1 (resp. C2) is easy.
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DKL(q ∥ exp w)

1 2 3 4 5 6

Constraints 
At a given position, the following constraints must hold: 
➤ Exactly one vertex is selected 
➤ This vertex has exactly one incoming and one outgoing arc

= argmin
q∈C1∩C2

DKL(q ∥ exp w)
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projection into an intersection of sets:

s.t. projection on C1 (resp. C2) is easy.
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Constraints related to 
even positions
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DKL(q ∥ exp w)

Optimization Problem 
We decompose the KL projection into the 
projection into an intersection of sets:

s.t. projection on C1 (resp. C2) is easy.
Set of valid marginal distributions 

over path
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TL;DR 
➤ Novel distribution over sequence labelings using mean regularization 
➤ Novel inference algorithm based on iterative Bregman projections 
➤ Supervised and weakly-supervised learning using Fenchel-Young losses 
➤ Many experimental results in the paper

Main takeway 
GPUs allows to rethink well-known algorithms to propose better parallelizable alternatives

! !

Caio Corro, Mathieu Lacroix, Joseph Le Roux

GPUs GO BRRRRRRR
Experimental Results 
➤ Faster on GPU than standard CRF for training and prediction 
➤ Somewhat slower than mean field for decoding          but comparable speed for training 
➤ Better results than mean field when there are hard structural constraints (i.e. forbidden transitions) 
➤ Weakly-supervised learning scenario (not possible with mean field)


