
Bregman Conditional Random Fields: Sequence Labeling
with Parallelizable Inference Algorithms

Caio Corro1 Mathieu Lacroix2 Joseph Le Roux2

1INSA Rennes, IRISA, Inria, CNRS, Université de Rennes, France
2Université Sorbonne Paris Nord, CNRS, LIPN, France

caio.corro@irisa.fr {lacroix,leroux}@lipn.fr

Abstract

We propose a novel discriminative model for
sequence labeling called Bregman conditional
random fields (BCRF). Contrary to standard
linear-chain conditional random fields, BCRF
allows fast parallelizable inference algorithms
based on iterative Bregman projections. We
show how such models can be learned using
Fenchel-Young losses, including extension for
learning from partial labels. Experimentally,
our approach delivers comparable results to
CRF while being faster, and achieves better
results in highly constrained settings compared
to mean field, another parallelizable alternative.

1 Introduction

Sequence labeling is a core natural language pro-
cessing task: it consists in assigning one tag per
token of an input sentence. Although simple, it
is powerful enough to encompass part-of-speech
(POS) tagging (Church, 1988), named-entity recog-
nition (Ramshaw and Marcus, 1995) including
complex variants (Corro, 2024), word segmenta-
tion (Xue, 2003), and even syntactic and semantic
parsing (Xipeng, 2009; Marcheggiani et al., 2017;
Gómez-Rodríguez and Vilares, 2018).

The main structured models for sequence label-
ing are hidden Markov models (Jelinek, 1997) and
conditional random fields (CRF, Lafferty et al.,
2001). In both settings, the most probable se-
quence of tags is computed via the Viterbi algo-
rithm (Viterbi, 1967; Forney, 1973). Learning pa-
rameters via maximum likelihood requires to com-
pute the log-partition function of the exponential
family distribution over all possible tag sequences
(Wainwright and Jordan, 2008), which can be done
using the Forward algorithm (Rabiner, 1989).

Both algorithms have a linear-time complexity
in the input length. They are naturally expressed as
dynamic programming algorithms that recursively
solve subproblems. Unfortunately, these algo-

rithms are inherently sequential and therefore can-
not benefit from parallelization of modern GPUs.

We propose a radically different approach named
Bregman conditional random fields (BCRF), in-
spired by entropic optimal transport (Cuturi, 2013;
Benamou et al., 2015) and SPARSEMAP (Nicu-
lae et al., 2018). BCRF relies on mean regular-
ization (Blondel et al., 2020) to define probability
distributions over sequence labelings. In this set-
ting, we develop approximate inference algorithms
based on iterative Bregman projections (Bregman,
1967), where each step of the algorithm solves par-
allelizable subproblems, taking full advantage of
modern hardware (Censor, 1998). Empirically we
show that this method is accurate and compares fa-
vorably to alternatives like mean field (MF, Wang
et al., 2020), especially in the presence of forbidden
tag transitions, a typical requirement in segmenta-
tion and named entity recognition.

Our contributions can be summarized as follows:
(1) we introduce BCRF, a novel approach to de-
fine distributions over sequence labelings; (2) we
develop a strongly parallelizable inference algo-
rithm that can be used as a drop-in replacement
for both Viterbi and Forward; (3) we show how
Fenchel-Young losses (Blondel et al., 2020) can be
leveraged to learn the parameters of a BCRF model,
including the case of learning from partial labels;
(4) we experiment on POS tagging, token segmen-
tation and named entity recognition and show that
our approach delivers the same performance as
standard CRF while being faster.

Our code is publicly available.1

2 Background

In this section, we set notations and review CRF to
stress what the computational limitations are and
how our approach differs from standard CRF.

1https://github.com/FilippoC/lightspeed-crf

1

https://github.com/FilippoC/lightspeed-crf

Notations. We write Ja, bK the set of integers
from a to b. Given a discrete set S, we write RS

the vector of reals indexed by elements of S, and
similarly for higher dimension tensors. Given set S
and function h, we denote v = [h(s)]s∈S the vector
indexed by elements of S s.t. vs = h(s). Given ma-
trices A and B, we denote ⟨A,B⟩ =

∑
i,j AijBij

the sum of entries of the Hadamard product (i.e. dot
product for vectors). The d−1 dimension simplex
is denoted △(d) = {x ∈ Rd

+ : ∥x∥1 = 1}, and
we write△ when dimension can be inferred from
context and △(S) when dimensions are indexed
by elements of S. Given vectors v ∈ Rd

+ and
t ∈ Rd

++, the Shannon entropy and the Kullback-
Leibler divergence2 are respectively defined as:

H(v) = −⟨v, log v⟩,

DKL[v|t] =
〈
v, log

v

t

〉
− ⟨v,1⟩.

Given a convex set S, we denote δS the indicator
function of S:

δS(s) =

{
0 if s ∈ S,

∞ otherwise.

Given function h, we note h∗ its Fenchel conjugate:

h∗(v) = sup
µ∈domh

⟨v,µ⟩ − h(µ) ,

and use max instead of sup when maximum exists.

2.1 Conditional Random Fields

Without loss of generality, we assume all inputs
of length n ≥ 3. Let s = s1 . . . sn be an input
sentence and T the set of tags. We denote by X
the set of sentence labelings (or tag sequences) for
s, i.e. x = x1 . . . xn ∈ X where xi ∈ T is the tag
associated with word si.

A Markov random field (MRF, Hammersley and
Clifford, 1971) defines a distribution over elements
of X using a collection of sufficient statistics F :

ϕ(x) ≜ (ϕf (x))f∈F .

For sequence tagging, it is usual to rely on a first-
order linear-chain, a MRF composed of unary and
sequential binary sufficient statistics. Unary suf-
ficient statistics are one-hot vectors representing

2Although the definition of DKL may seem surprising, it is
the specific form used for iterative Bregman projections as it
corresponds to a Bregman divergence (Benamou et al., 2015).

each tag xi, while binary sufficient statistics indi-
cate transitions between consecutive tags:

bii(x) = [0 . . . 1 . . . 0]︸ ︷︷ ︸
|T | × |T | values

,

i.e. bii(x)t,t′ = 1 if xi = t and xi+1 = t′, and 0
otherwise. Note that in the case of linear chains,
unary sufficient statistics are redundant. Therefore,
in the following we will use only binary sufficient
statistics and denote sufficient statistics as vectors:

ϕ(x) ∈ {0, 1}W

where W = J1, n− 1K× T × T , and ϕ(x)i,t,t′ =
1 ⇔ xi = t ∧ xi+1 = t′. We denote the set of
sufficient statistics as Y = {ϕ(x)|x ∈ X}.

The exponential family associated with ϕ is:

pw(x) = exp (⟨w, ϕ(x)⟩ −AY (w)) ,

where w ∈ RW is the vector of canonical param-
eters weighting statistics. More precisely wi,t,t′

is the transition score associated with tagging si
with t and si+1 with t′, reflected by the sufficient
statistics bii(x)t,t′ . To forbid tag assignments, or
transitions, one can set the corresponding values in
w to −∞. AY is the log-partition function ensur-
ing that the distribution is correctly normalized:

AY (w) = log
∑
y∈Y

exp ⟨w,y⟩. (1)

Computing the most probable tag sequence x̂(w)
can be reduced to solving:

x̂(w) ∈ argmax
x∈X

⟨w, ϕ(x)⟩. (2)

A conditional random field (CRF, Lafferty et al.,
2001) is a MRF for which the canonical parameters
w are conditioned on an external observation, the
input sentence s in our case. To this end, their
values are computed by a θ-parameterized scoring
function fθ, e.g. a neural net. Then, the conditional
probability of x given s can be written as:

pθ(x|s) = exp (⟨fθ(s), ϕ(x)⟩ −AY (fθ(s))) .

Parameters θ are usually learned from a labeled
dataset (s,x) ∈ D by minimizing the expected
negative log-likelihood (NLL) of the data:

min
θ

E(s,x)∼D [ℓNLL(fθ(s);ϕ(x))] ,

where the NLL loss function is defined as:

ℓNLL(w;y) = −⟨w,y⟩+AY (w) .

2

c3,1

c3,2

c3,3

c3,4

c4,2

Figure 1: Illustration of the dependency between stages
in the dynamic programming recursion.

2.2 The Viterbi and Forward Algorithms
We now give a brief presentation of the Viterbi and
forward algorithms to compute (2) and (1), respec-
tively, using the framework proposed by Mensch
and Blondel (2018). For any vector v ∈ Rd, we
define the Ω-regularized maximum function (Nes-
terov, 2004; Niculae and Blondel, 2017):

maxΩ(v) = max
µ∈△(d)

⟨v,µ⟩ − Ω(µ).

In particular, we can recover two known functions.
First, the hard maximum via null regularization:

Ω(·) = 0 ⇔ maxΩ(v) = maxi vi.

Second, we can express the soft maximum (also
called logsumexp) via entropic regularization:

Ω = −H ⇔ maxΩ(v) = log
∑

i exp vi , (3)

see Appendix B.
Let cΩ(w) be the regularized maximum score

over tag sequences X:

cΩ(w) ≜ maxΩ
(
[⟨w, ϕ(x)⟩]x∈X

)
.

We can recast computing equations (2) and (1) as:

c0(w) = max
x∈X

⟨w, ϕ(x)⟩ and c−H(w) = AY (w),

highlighting the fact that MAP and marginal infer-
ence only differ in the choice of regularization.

Although |X| is exponential in the length of the
input sentence, we can decompose the computation
of cΩ(w) into a sequence of subproblems, i.e. we
can recursively compute intermediate chart values
cΩ,i,t via dynamic programming (Bellman, 1954) :

cΩ,1,t(w) ≜ 0,

cΩ,i,t(w) ≜ maxΩ

([
cΩ,i−1,t′(w) + wi,t′,t

]
t′∈T

)
,

cΩ(w) ≜ maxΩ
(
[cΩ,n,t(w)]t∈T

)
.

Proof is given in Appendix A. Space and time com-
plexities are O(n|T |) and O(n|T |2), respectively.

Wavefront Parallelization. For a position i,
chart values cΩ,i,t do not depend on each other.
We can group chart elements in stages correspond-
ing to each position i. Elements in stage i+ 1 di-
rectly depend on elements in stage i, see Figure 1.
Most implementations of the Viterbi and forward
parallelize computations in a given stage, a tech-
nique called wavefront parallelization (Muraoka,
1971). Unfortunately, due to the dependency be-
tween stages, the n parallel computations must be
performed sequentially, which prevent leveraging
parallelization capabilities of GPUs.

3 Bregman Conditional Random Fields

We now introduce BCRF and link maximum a pos-
teriori (MAP) inference with marginal inference.
Then, we show how marginal inference for BCRF

can be reduced to a Kullback-Liebler projection
into the intersection of two convex sets. This paves
the way for inference via iterative Bregman projec-
tions.

3.1 Mean Regularization

Let M = {0, 1}W×Y be the matrix whose
columns are the vectors of Y , i.e.

[
M⊤]

y
= y.

As such, M⊤w is a vector containing the score of
each valid tag sequence. From Equation (3), we
rewrite the log-partition function as:

AY (w) = max
p∈△(Y)

〈
p,M⊤w

〉
+ H(p)︸ ︷︷ ︸

distrib. reg.

, (4)

where the entropy regularizes the distribution over
all outputs. Setting q = Mp and optimizing over
q ∈ {Mp|p ∈ △(Y)} = conv(Y), we obtain:

AY (w) = max
q∈conv(Y)

⟨q,w⟩ −R(q) , (5)

where R is a structured regularization term, defined
so that equality holds.3 The set conv(Y) is called
the marginal polytope, and computing AY (w) is
therefore often referred to as marginal inference.
The gradient of AY is defined as (Appendix C):

∇AY (w) = argmax
q∈conv(Y)

⟨q,w⟩ −R(q) , (6)

i.e. ∇AY (w) is a vector of marginal probabili-
ties, and there exists a unique distribution over
sequences p such that∇AY (w) = Mp. As such,

3See (Blondel et al., 2020, Eq. 25) for the exact definition.

3

function AY (w) identifies an exponential family
distribution over sequences X .

It is important to note that the dimension of
q ∈ conv(Y) is polynomial in the input length,
while the dimension of p ∈ △(Y) is exponential
in the input length. Key to our approach is to use an-
other family of distributions over sequences where
regularization is applied on marginals, called mean
regularization.

Definition 1. Given cannonical parameters
w ∈ RW , a BCRF defines a distribution
over sequence labeling Y whose marginal
transition probabilities are given by ∇BY (w)
where:

BY (w) = max
p∈△(Y)

⟨p,M⊤w⟩+H(Mp)︸ ︷︷ ︸
mean reg.

.

Using the same change of variable, we obtain:

BY (w) = max
q∈conv(Y)

⟨q,w⟩+H(q).

As in Equation (5), the optimization is done over
vector conv(Y) but the regularization has now a
simple analytical form, paving the way for efficient
solvers.

MAP inference. Computing the most probable
y ∈ Y reduces to solving an unregularized problem
for both distributions defined by AY and BY :

ŷ(w) ≜ argmax
y∈conv(Y)

⟨w,y⟩,

and the best tag assignation is then:

x̂(w)i = argmax
t∈T

max
t′∈T

ŷ(w)i,t,t′

x̂(w)n = argmax
t∈T

max
t′∈T

ŷ(w)n−1,t′,t

for i ∈ J1, n− 1K. Although seemingly differ-
ent from marginal inference, the next proposition
shows that this problem can be approximated by:

∇BY (τ
−1w) = argmax

q∈conv(Y)
⟨τ−1w, q⟩+H(y),

for a sufficiently small temperature τ > 0.

Proposition 1.

lim
τ→0

BY (τ
−1w) = max

y∈conv(Y)
⟨w,y⟩.

The proof is given in Appendix D. Although Propo-
sition 1 tells that mean regularization can be used
as approximate MAP inference, setting τ close to
zero raises several issues: (1) the algorithm we de-
velop in Section 3.3 cannot be applied when τ = 0,
and (2) too small values for τ may lead to compu-
tational instabilities such as over- and underflow.
Therefore, we fix τ to a small value and then ap-
proximate MAP by searching for the most probable
tag after marginalizing over transition probabilities:

x̂(w)i ≃ argmax
t∈T

∑
t′∈T

[
∇BY (τ

−1w)
]
1,t,t′

and x̂(w)n ≃ argmax
t∈T

∑
t′∈T

[
∇BY (τ

−1w)
]
n−1,t′,t

for i ∈ J1, n−1K. This can be understood as mini-
mum Bayes risk decoding (MBR, Bickel and Dok-
sum, 1977; Goodman, 1996), with risk defined as
the number of incorrect predictions.4

3.2 Marginal Polytope

The marginal polytope conv(Y) plays an important
role in BCRF as inference requires to optimize a
concave objective over it. In this section, we give
a novel tight characterization of this polytope, that
will be used to develop our algorithms. Key is our
focus on transitions instead of tags.

Reduction. We formalize interpreting each vec-
tor in Y as a set of arc selection variables in a graph.
Let G = (V,E) be a directed graph. The node set
V is partitioned into clusters Vi = {vti | t ∈ T}
associated with each word si, for i ∈ J1, nK. The
arc set E consists of arcs connecting nodes of a
cluster to nodes of the consecutive one:

E = {(vti, vt
′
i+1) | i ∈ J1, n− 1K, t ∈ T, t′ ∈ T}.

By construction, any path from a node of V1 to one
of Vn covers a node in each cluster, and covering
node vti corresponds to assigning tag t to word si.
Such a path is called valid. It is is easy to see that
there is one-to-one mapping between valid paths
and elements of Y: each vector y ∈ Y corresponds
to the valid path than contains arc (vti, vt

′
i+1) if and

only if yi,t,t′ = 1.

4As such, MBR decoding can return an invalid sequence
of tags. In the seminal work of Goodman (1996) for syntactic
parsing, this was motivated by the fact that evaluation metric
did not take into account the well-formedness of predictions.

4

Linear Programming. We now give a descrip-
tion of the convex hull of Y . For a node subset
U ⊆ V , let δ+(U) and δ−(U) denote the set of arcs
leaving and entering U , respectively. For simplic-
ity, we write δ+(v) and δ−(v) instead of δ+({v})
and δ−({v}).

Any valid path enters each cluster but V1 once,
which can be expressed as:5

∀i ∈ J2, n− 1K :
∑

a∈δ−(Vi)

ya = 1. (7)

Next, for any node not in V1 nor Vn, the number
of incoming arcs must be egal to the number of
outgoing arcs (which will be either 0 or 1 in an
integral solution):

∀i ∈ J2, n− 1K,
∀v ∈ Vi

:
∑

a∈δ+(v)

ya =
∑

a∈δ−(v)

ya. (8)

It is easy to see that any valid path in G satisfies
these constraints. Since G is acyclic, any vector
y ∈ {0, 1}E that satisfies equalities (7) and (8) de-
scribes a valid path. The next proposition shows
that they define an integral polytope, i.e. they char-
acterize the convex hull of feasible solutions.

Proposition 2. The tagging polytope conv(Y)
is described by:

conv(Y) = {y ∈ RE
+ | y satisfies (7), (8).}

The proof is given in Appendix E.

3.3 Iterative Bregman Projections
As explained in the previous section, both MAP and
marginal inference can be reduced to computing
∇BY (·). Next, we introduce our efficient method
based on iterative Bregman projections (IBP).

First, notice that our objective can be reduced to
a Kullback-Leibler (KL) projection:

argmax
q∈conv(Y)

⟨q,w⟩+ τH[q]

= argmin
q∈conv(Y)

⟨q, log q⟩−⟨q,1⟩−⟨q, log exp τ−1w⟩

=argmin
q∈conv(Y)

DKL[q| exp τ−1w],

where the equality in the second line holds because
⟨q,1⟩ = n−1 is constant by constraints (7) and (8).

5Since G is acyclic and arcs connect consecutive clusters,
only one of these constraints is necessary, the others becoming
redundant. However, they are kept in order to strengthen each
subproblem in our decomposition.

This optimization problem aims to compute the pro-
jection of exp τ−1w into the set conv(Y) where
the distance is measured using the KL divergence.
In order to use on IBP, we need to rewrite conv(Y)
as an intersection of convex sets for which we
can derive efficient KL projections. We describe
conv(Y) as the intersection of two polytopes Ceven
and Codd by partitioning the set of constraints (7)
and (8) into those associated with clusters Vi with
i odd, and those associated with clusters Vi with i
even.6

Let Ci be the set of vectors q for which con-
straints on the arcs that are incident to vertices in
cluster Vi are satisfied, that is:

Ci =

q ∈ RE
+

∣∣∣∣∣∣∣
∑

a∈δ−(Vi)
qa = 1,

∀v ∈ Vi :
∑

a∈δ+(v) qa
=
∑

a∈δ−(v) qa

 .

We define Ceven and Codd as the intersection of poly-
topes Ci as follows:

Ceven =

⌈n
2
⌉−1⋂

j=1

C2j and Codd =

⌊n
2
⌋−1⋂

j=1

C2j+1.

Therefore, we have conv(Y) = Ceven ∩ Codd.
We now describe how to compute the KL pro-

jection onto Ceven. Since the constraints of each Ci
contains only variables associated with arcs δ(Vi)
and the objective function of the projection de-
composes per arc, one can decompose computing
minq∈Ceven DKL(q,w) as:

⌈n
2
⌉−1∑

j=1

min
q|δ(V2j)∈C2j

DKL

(
q|δ(V2j),w|δ(V2j)

)
,

where for a vector v ∈ RS and S′ ⊆ S, v|S′

denotes the the restriction of v to the indices asso-
ciated with the elements of S′, and when used in
set inclusions it also restricts the right-hand side
elements. Similarly, minq∈Codd DKL(q,w) can be
rewritten as:

⌊n
2
⌋−1∑

j=1

min
q|δ(V2j+1)

∈C2j+1

DKL

(
q|δ(V2j+1),w|δ(V2j+1)

)
.

Hence, each KL projection reduces to a sum of KL
projections minq|δ(Vi)∈Ci

DKL

(
q|δ(Vi),w|δ(Vi)

)
with closed-form solutions, see Appendix F.

6Note that clusters V1 and Vn are not considered for defin-
ing Ceven and Codd since all constraints are associated with a
cluster Vi with i ∈ J2, n− 1K.

5

Algorithm 1 The BCRF inference algorithm based on iterative Bregman projections, where w ∈ RW are
canonical parameters, n the input length and k the number of iterations. When using the | notation on the
left-hand side of an assignation, we assume only the designated coordinates are updated.

function BCRFINFERENCE(w, n, k)
q(0) ← w
for i← 1 . . . k do

q(i) ∈ RW ▷ Randomly initialized vector
if i ≡ 0 (mod 2) then

for j ← 1 . . . ⌈n
2
⌉ − 1 do ▷ Can be computed in parallel

q(i)|δ(V2j) ← argmin
µ∈RW s.t. µ|δ(V2j)

∈C2j

DKL

(
µ|δ(V2j), q

(i−1)|δ(V2j)

)
else

for j = 1 . . . ⌊n
2
⌋ − 1 do ▷ Can be computed in parallel

q(i)|δ(V2j+1) ← argmin
µ∈RW s.t. µ|δ(V2j+1)∈C2p+1

DKL

(
µ|δ(V2j+1), q

(i−1)|δ(V2j+1)

)
return q(k) ▷ Returns an approximation of∇BY (w)

The full algorithm simply alternates between
projections in Codd and Ceven. Pseudocode is given
in Algorithm 1. A more detailed description of ITB
algorithm can be found in (Benamou et al., 2015,
Sec. 2.1)

4 Loss Functions

In Section 3, we defined a mean regularized distri-
bution over sequences, and show that both marginal
inference and MAP in this setting reduce to com-
puting∇BY (·). We now define loss functions for
supervised and weakly-supervised learning also
based on computing ∇BY (·), and thus enjoying
the same computational properties.

4.1 Supervised Learning

For supervised learning, we rely on the Fenchel-
Young (FY) loss framework (Blondel et al., 2020).

Definition 2. Given a regularization function
Ω, the FY loss is defined as:

ℓΩ(w;y) ≜− ⟨w,y⟩+Ω(y)

+
(
Ω+δconv(Y)

)∗
(w),

where y ∈ Y is the gold output and w are
weights.

Setting Ω = R as defined in Eq. 5, we obtain
the NLL loss for CRFs since the last term is then
AY (w). This framework naturally suggests using
mean regularization Ω = −H to define a loss func-
tion, which gives the following loss and gradient:

ℓ−H(w;y) = −⟨w,y⟩ −H(y) +BY (w)

and ∇ℓ−H(w;y) = −y+∇BY (w),

i.e. computing the gradient can be done using our
inference algorithm.

4.2 Learning with Partial Labels
Learning with partial labels is a weakly supervised
learning scenario where we do not have access to
the gold annotation, but instead, for each input, we
have access to a subset of labels Ỹ ⊆ Y containing
the gold label.

Definition 3. Given a regularization function
Ω, the partial FY loss is defined as:

ℓ̃Ω(w; Ỹ) ≜
(
Ω+ δconv(Y)

)∗
(w)

−
(
Ω+ δ

conv(Ỹ)

)∗
(w),

where Ỹ ⊂ Y is a non-empty set containing
the expected gold output.

Proposition 3. Partial FY losses satisfy the
following properties:

1. Generalization of FY losses. If Ỹ = {y}
is a singleton containing only a gold label,
then ℓ̃Ω(w, {y}) = ℓΩ(w,y).

2. Non-negativity. The loss is bounded below
by 0.

3. Smaller partial labeling set =⇒ bigger
loss. Let Ỹ ′ ⊆ Ỹ , then:

ℓ̃(w; Ỹ ′) ≥ ℓ̃(w; Ỹ).

Proofs are given in App. H. This family of losses
was introduced by Stewart et al. (2023). They an-
alyze properties of the loss function when Ω = 0,

6

that we (trivially) extend to more general regular-
ization. Importantly, property (5) shows that the
more information we have, the better is the loss

Setting Ω = R, we obtain the NLL loss after
marginalizing over Ỹ , a standard approach in learn-
ing from partial labels (Jin and Ghahramani, 2002)
that can be understood as a special instance of the
EM algorithm, see (Corro, 2024, Sec. 4.1). Yang
et al. (2018) and Huang et al. (2019) learned se-
quence labeling models using this loss. For the
BCRF case, we rely on mean regularization and
define the following loss function and gradient:

ℓ̃−H(w; Ỹ)= BY (w)−B
Ỹ
(w)

and ∇ℓ̃−H(w; Ỹ)= ∇BY (w)−∇B
Ỹ
(w)

which requires two calls to our IBP algorithm.

5 Related Work

The main motivation of our approach is to develop
a sequence labeling model suitable for parallel pro-
cessors, e.g. GPUs. Developing such models is
a shared preoccupation in deep learning, starting
with the ubiquitous transformers (Vaswani et al.,
2017) or more recently state-space models (Gu
et al., 2022) and following works on linear trans-
formers (Yang et al., 2024, Table 2). Designing
NLP algorithms for GPUs has been explored in
syntactic parsing (Johnson, 2011; Hall et al., 2014)
and machine translation (He et al., 2015; Argueta
and Chiang, 2018). More generally, efficient par-
allelization of dynamic algorithms is widely stud-
ied (Valiant et al., 1983; Maleki et al., 2014).

With motivations similar to ours, Wang et al.
(2020) proposed to rely on mean field (MF, Weiss,
1907; Parisi, 1979) to approximate a CRF distribu-
tion using a parallel algorithm. However, MF has
the following issues, all of which are solved by our
approach: (1) the MF objective (see Appendix G
for details) is non-convex (Wainwright and Jordan,
2008, Sec. 5.4), and therefore its approximation
strongly depends on initialization; (2) the parallel
decoding algorithm used for MF by Wang et al.
(2020) is not even guaranteed to converge to a local
minima (Kraehenbuehl and Koltun, 2013); (3) MF

cannot handle highly structured problems, i.e. prob-
lems where there are forbidden transitions between
tags to ensure well-formedness of prediction (see
our experiments and Appendix G).

Our method also has connections with frame-
works based on mean regularization, such as
SPARSEMAP (Niculae et al., 2018). The main

difference is that we use an entropic regulariza-
tion in order to develop a fast alternative to the
dynamic programming (DP) inference algorithms,
while SPARSEMAP solver relies on iterative calls
to these DP algorithms, and hence is slower.

6 Experiments

We present a series of experiments on part-of-
speech (POS) tagging, joint word segmentation and
POS tagging, and named entity recognition (NER).
We compare CRF (i.e. Viterbi/forward), MF and
BCRF in terms of accuracy and time. For reference,
we also include an unstructured model, that predict
each tag independently.7 For MF and BCRF, we
evaluate the algorithms with both 5 and 10 itera-
tions of the respective inference algorithms. For
decoding with BCRF, we set τ−1 = 10 in all exper-
iments.

We use datasets from the Universal Dependency
Treebank 2.15 (UD, Nivre et al., 2020) for the
first two tasks and the CONLL 2003 shared task
data (Tjong Kim Sang and De Meulder, 2003) for
the last one. We use standard splits in all cases. We
average results over 5 runs initialized randomly.

Neural network. The weight function fθ is im-
plemented by a self-attentive encoder network
(Vaswani et al., 2017) for all our experiments. Tag
and transition scores are computed by a simple
multi-linear perceptron. Note that our model is
non-homogeneous, that is transition scores are com-
puted independently for each adjacent word. The
neural network is trained from scratch, except for
NER where we use BERT (Devlin et al., 2019).
Hyperparameters are given in Appendix I.

6.1 Part-of-Speech Tagging

We evaluate on four corpora from UD: LassySmall
(Dutch), EWT (English) and GSD (French and Ger-
man). We use coarse POS tags for all languages
except French as it contains only UD tags. Results
are given in Table 1a. We can see that all methods
are close, but our algorithm outperforms MF for ap-
proximate decoding after training with the standard
CRF loss.

6.2 Word Segmentation and POS Tagging

We cast joint word segmentation and POS tagging
as a character sequence labeling problem in the

7Unstructured models cannot guarantee well-formedness
of predictions for highly constrained settings. In these cases,
we rely on simple heuristics to construct valid outputs.

7

No self-attentive encoder 2 layers

Dutch English French German Dutch English French German

Baseline

Unstructured 90.5 85.8 92.7 89.0 93.4 90.8 96.0 94.0

CRF training

Viterbi 94.3 91.3 95.9 94.1 94.7 91.9 96.2 94.3
MF 5 it. 93.8 90.6 95.5 94.0 94.4 91.0 95.8 94.2
MF 10 it. 93.9 90.7 95.5 94.1 94.5 91.0 95.8 94.2
BCRF 5 it. 94.4 91.3 95.9 94.1 94.7 91.9 96.2 94.3
BCRF 10 it. 94.3 91.3 95.9 94.1 94.7 91.9 96.2 94.3

MF training

Viterbi 93.7 89.1 95.8 93.8 94.6 91.6 96.3 94.0
MF 5 it. 94.3 91.4 95.9 94.0 94.7 91.7 96.3 94.1
MF 10 it. 94.3 91.4 95.9 94.0 94.7 91.7 96.3 94.1

BCRF training

Viterbi 94.1 91.1 95.8 94.0 94.6 91.8 96.5 94.4
BCRF 5 it. 94.1 91.1 95.8 94.0 94.6 91.8 96.5 94.4
BCRF 10 it. 94.1 91.1 95.8 94.0 94.6 91.8 96.5 94.4

(a) Accuracy results for POS tagging.

BERT

Base Large

Baseline

Unstructured 91.6 92.0

CRF training

Viterbi 91.9 92.3
MF 5 it. 91.7 91.9
MF 10 it. 91.6 91.9
BCRF 5 it. 91.9 92.3
BCRF 10 it. 91.9 92.3

MF training

Viterbi 91.7 92.2
MF 5 it. 91.6 92.1
MF 10 it. 91.6 92.1

BCRF training

Viterbi 91.7 92.1
BCRF 5 91.6 92.1
BCRF 10 91.7 92.1

(b) NER F-scores.

No self-att. encoder 2 layers 4 layers

Chinese Japanese Chinese Japanese Chinese Japanese

Baseline

Unstructured 47.3 52.9 62.0 86.3 64.9 89.0

CRF training

Viterbi 84.2 90.6 84.3 90.8 84.3 90.7
MF 5 72.9 76.5 71.4 75.4 71.9 75.1
MF 10 74.6 77.6 72.2 76.1 72.5 76.0
BCRF 5 81.9 88.7 81.7 88.7 82.0 88.5
BCRF 10 83.7 90.1 83.7 90.4 83.8 90.2

MF training

Viterbi 77.6 79.6 79.9 82.3 81.1 83.5
MF 5 81.0 88.7 80.7 88.8 80.8 89.0
MF 10 82.0 89.1 81.2 89.1 81.2 89.3

BCRF training

Viterbi 83.6 89.8 84.5 90.5 84.0 90.7
BCRF 5 82.2 88.8 83.3 89.8 82.8 90.1
BCRF 10 83.2 89.6 84.2 90.4 83.8 90.6

(c) F-score for joint segmentation and POS tagging.

BERT

Base Large

CRF training

Viterbi 90.5 91.2
MF 5 it. 90.2 90.8
MF 10 it. 90.3 90.8
BCRF 5 it. 90.4 91.2
BCRF 10 it. 90.5 91.2

BCRF training

Viterbi 90.6 91.2
MF 5 it. 90.3 90.9
MF 10 it. 90.3 90.9
BCRF 5 it. 90.6 91.2
BCRF 10 it. 90.6 91.2

(d) Partially supervised
NER F-scores.

Table 1: Experimental results. The unstructured model does not have transition scores neither constraints between
adjacent pair of tags. For each training approach, we evaluate different decoding strategies.

Dutch English French German

L. MF BCRF MF BCRF MF BCRF MF BCRF

0 ×6.2 ×7.3 ×5.0 ×6.1 ×6.0 ×6.5 ×5.4 ×6.6
2 ×3.8 ×4.1 ×3.9 ×4.1 ×4.3 ×4.7 ×3.8 ×4.0

(a) POS tagging.

Chinese Japanese

L. MF BCRF MF BCRF

0 ×8.8 ×7.8 ×12.1 ×12.3
2 ×5.5 ×5.4 ×5.6 ×5.9
4 ×4.1 ×4.0 ×4.4 ×4.5

(b) Joint word segmentation and
POS tagging.

Sup. Partial

BCRF BCRF

Base ×1.9 ×1.7
Large ×1.2 ×1.2

(c) NER.

Table 2: Relative training time speed-up compared to using the forward algorithm to compute the loss. We set the
number of iterations to 10. Column L. is the number of encoder layers, whereas Base/Large refer to BERT sizes.

8

BIES format (Ratinov and Roth, 2009). For ex-
ample, tag B-VB indicates the first character of a
multi-character verb, whereas S-VB indicates a sin-
gle character verb. Note that this problem is highly
structured: for example, we can only assign tag
I-VB if the previous tag was B-VB or I-VB. This is
implemented using −∞ weights on forbidden tag
transitions. We report the F-score on reconstructed
tagged words. We present experiments on Chinese
and Japanese UD GSD datasets.

Results are given in Table 1c. We see that on this
task, with more tags than simple POS tagging and,
more importantly, with constraints on forbidden
adjacent tag pairs, both unstructured approach and
MF struggle to recover the exact CRF performance.
In contrast, decoding with the BCRF approach per-
forms better than MF, and when training is per-
formed with BCRF too, the F-scores are almost
similar to the CRF model.

6.3 Named-Entity Recognition
For NER we report F-scores of reconstructed la-
beled mentions on CONLL 2003, using BERT (De-
vlin et al., 2019) in the base and large versions. In
this series of experiments we test supervised and
partially supervised training regimes.

For supervised training, we report results in Ta-
ble 1b. As in POS tagging, we see that BCRF is
closer to CRF than MF, and in the case of the large
BERT model, BCRF manages to (slightly) improve
over CRF decoding.

For partially supervised learning, we follow the
same setting as Huang et al. (2019) and split the
training set into 4 subsets, each annotated with only
one entity type. For a given sentence s, the partial
labeling Ỹ is all sequence labelings that contains
at least the gold annotated tags. We report results
in Table 1d. We see that our method recovers the
same accuracy as CRF when trained with CRF loss,
while MF does not. When trained with BCRF, there
is a small drop in performance, but CRF and BCRF

give equivalent results while MF is lower.

6.4 Speed Improvement
We now analyze the time speed-up. All timing
include the forward (and backward if training) pass
in the neural network.

We report relative training time in Table 2. For
POS tagging our model trains up to 7.3 times faster
than standard CRF training with simple word em-
beddings and up to 4.7 times when using 2 encoder
layers. Moreover, our method is faster than MF

Dutch English French German

L. MF BCRF MF BCRF MF BCRF MF BCRF

0 ×9.1 ×5.4 ×8.0 ×4.9 ×10.4 ×7.0 ×8.5 ×5.2
2 ×6.6 ×4.7 ×6.2 ×4.4 ×8.1 ×5.9 ×6.4 ×4.5

(a) POS tagging

Chinese Japanese

L. MF BCRF MF BCRF

5 iterations

0 ×14.2 ×7.7 ×24.6 ×14.6
2 ×9.0 ×6.2 ×12.0 ×9.3
4 ×6.9 ×5.0 ×9.3 ×7.8

10 iterations

0 ×9.5 ×5.2 ×19.8 ×11.0
2 ×7.1 ×4.6 ×10.5 ×7.7
4 ×5.8 ×3.8 ×8.7 ×6.8

(b) Joint word segmentation and
POS tagging.

MF BCRF

5 iterations

Base ×2.9 ×2.6
Large ×1.6 ×1.5

10 iterations

Base ×2.9 ×2.4
Large ×1.6 ×1.5

(c) NER.

Table 3: Relative decoding time speed-up compared to
the Viterbi algorithm. Column L. is the number of en-
coder layers, whereas Base/Large refer to BERT sizes.

training. For joint segmentation and POS tagging,
MF is slightly faster, but at the expense of a drop
in performance (see Table 1c). Importantly, for
NER, MF cannot be used in the partial supervision
scenario. Our BCRF approach is significantly faster
than CRF training even when using a full BERT

model.
We report relative decoding time in Table 3. Al-

though MF is faster that BCRF, the difference di-
minishes as the network becomes larger. Moreover,
as shown in downstream task results, BCRF can
handle structual constraint, while still being faster
than using the Viterbi algorithm for decoding.

7 Conclusion

In this work, we introduce BCRF, a novel sequence
labeling model based on entropic mean regular-
ization, and a novel inference algorithm based on
iterative Bregman projections. This method is de-
signed to take full advantage of parallel processors.

While we designed BCRF for sequence labeling,
we believe that the proposed methodology paves
the way for novel inference algorithms in other
structured prediction settings, such as parsing but
also automatic speech recognition for which Viterbi
and forward are known bottlenecks (Ondel et al.,
2022).

9

Acknowledgements

This work was granted access to the HPC re-
sources of IDRIS under the allocation 2024-
AD011013727R1 made by GENCI. This work was
supported by the LABEX EFL (Empirical Foun-
dations of Linguistics, ANR-10-LABX-0083), op-
erated by the French National Research Agency
(ANR). This work is supported by the SEMIAMOR
(CE23-2023-0005) and InExtenso (ANR-23-IAS1-
0004) project grants given by the French National
Research Agency (ANR).

Limitations

While our model demonstrates that a theoretical
treatment of a NLP task deemed simple and well
understood can lead to a novel method with practi-
cal effectiveness, it suffers some limitations.

First, our model is designed with parallel com-
puting architectures in mind, i.e. GPUs. On a
purely sequential architecture. However, we ob-
serve that parallel architectures have become ubiq-
uitous and so it seems a reasonable limitation.

Second, our method relies on the fact that the
continuous relaxation of the optimization problem
underlying the labeling task is integral. While our
approach can be easily adapted to second-order
linear chains using the standard trick (He, 1988),
it cannot directly rely on the factorized second-
order CRF trick of Wang et al. (2020). More gener-
ally, our approach cannot be applied on CRF more
general than linear chain ones as our formulation
would not ensure local consistency without extra
variables, but adding these variables results in prob-
lems for which we may not find a closed-form
expression of the solution to the KL projection.
However, our method could be used to solve linear-
chain CRF arising from dual decomposition based
methods like in the row and column decomposition
of a grid CRF (Komodakis et al., 2011).

Finally, while our approach is generic in the
sense that it could be applied to any dynamic pro-
gramming algorithm that operates on graphs, it can-
not be trivially adapted to dynamic programming
algorithms that operate on hypergraphs (Martin
et al., 1990).

References
Arturo Argueta and David Chiang. 2018. Composing

finite state transducers on GPUs. In Proceedings
of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers),
pages 2697–2705, Melbourne, Australia. Association
for Computational Linguistics.

Amir Beck. 2017. First-Order Methods in Optimiza-
tion. Society for Industrial and Applied Mathematics,
Philadelphia, PA.

Richard Bellman. 1954. The theory of dynamic pro-
gramming. Bulletin of the American Mathematical
Society, 60(6):503–515.

Jean-David Benamou, Guillaume Carlier, Marco Cu-
turi, Luca Nenna, and Gabriel Peyré. 2015. Iterative
bregman projections for regularized transportation
problems. SIAM J. Sci. Comput., 37(2).

Dimitri P Bertsekas. 1999. Nonlinear programming.
Athena Scientific Belmont.

Peter J. Bickel and Kjell A. Doksum. 1977. Mathe-
matical Statistics: Basic Ideas and Selected Topics.
Prentice Hall.

Mathieu Blondel, André F.T. Martins, and Vlad Niculae.
2020. Learning with fenchel-young losses. Journal
of Machine Learning Research, 21(35):1–69.

Stephen P Boyd and Lieven Vandenberghe. 2004. Con-
vex optimization. Cambridge university press.

Lev M. Bregman. 1967. The relaxation method of find-
ing the common point of convex sets and its appli-
cation to the solution of problems in convex pro-
gramming. USSR Computational Mathematics and
Mathematical Physics, 7(3):200 – 217.

Yair Censor. 1998. Parallel Optimization: Theory, Algo-
rithms, and Applications. Oxford University Press-
New York, NY.

Kenneth Ward Church. 1988. A stochastic parts pro-
gram and noun phrase parser for unrestricted text.
In Second Conference on Applied Natural Language
Processing, pages 136–143, Austin, Texas, USA. As-
sociation for Computational Linguistics.

Michele Conforti, Gérard Cornuéjols, and Giacomo
Zambelli. 2013. Extended formulations in combina-
torial optimization. Annals of Operations Research,
204(1):97–143.

Caio Filippo Corro. 2024. A fast and sound tagging
method for discontinuous named-entity recognition.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
19506–19518, Miami, Florida, USA. Association for
Computational Linguistics.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In Advances in
Neural Information Processing Systems, volume 26.
Curran Associates, Inc.

John M. Danskin. 1966. The theory of max-min, with
applications. SIAM Journal on Applied Mathematics,
14(4):641–664.

10

https://doi.org/10.18653/v1/P18-1251
https://doi.org/10.18653/v1/P18-1251
https://doi.org/10.1137/1.9781611974997
https://doi.org/10.1137/1.9781611974997
https://doi.org/10.1090/s0002-9904-1954-09848-8
https://doi.org/10.1090/s0002-9904-1954-09848-8
https://doi.org/10.1137/141000439
https://doi.org/10.1137/141000439
https://doi.org/10.1137/141000439
http://www.athenasc.com/nonlinbook.html
http://jmlr.org/papers/v21/19-021.html
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1093/oso/9780195100624.001.0001
https://doi.org/10.1093/oso/9780195100624.001.0001
https://doi.org/10.3115/974235.974260
https://doi.org/10.3115/974235.974260
https://doi.org/10.1007/s10479-012-1269-0
https://doi.org/10.1007/s10479-012-1269-0
https://doi.org/10.18653/v1/2024.emnlp-main.1087
https://doi.org/10.18653/v1/2024.emnlp-main.1087
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
http://www.jstor.org/stable/2946123
http://www.jstor.org/stable/2946123

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

S. C. Fang. 1992. An unconstrained convex program-
ming view of linear programming. ZOR Zeitschrift
für Operations Research Methods and Models of Op-
erations Research, 36(2):149–161.

S.-C. Fang, J. R. Rajasekera, and H.-S. J. Tsao. 1997.
Entropy Optimization and Mathematical Program-
ming. Springer US.

G.D. Forney. 1973. The Viterbi algorithm. Proceedings
of the IEEE, 61(3):268–278.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1314–1324,
Brussels, Belgium. Association for Computational
Linguistics.

Joshua Goodman. 1996. Parsing algorithms and metrics.
In 34th Annual Meeting of the Association for Com-
putational Linguistics, pages 177–183, Santa Cruz,
California, USA. Association for Computational Lin-
guistics.

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics, 25(4):573–606.

Albert Gu, Karan Goel, and Christopher Re. 2022. Ef-
ficiently modeling long sequences with structured
state spaces. In International Conference on Learn-
ing Representations.

David Hall, Taylor Berg-Kirkpatrick, and Dan Klein.
2014. Sparser, better, faster GPU parsing. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 208–217, Baltimore, Maryland. Asso-
ciation for Computational Linguistics.

JM Hammersley and P Clifford. 1971. Markov fields
on finite graphs and lattices.

Hua He, Jimmy Lin, and Adam Lopez. 2015. Gappy
pattern matching on GPUs for on-demand extraction
of hierarchical translation grammars. Transactions of
the Association for Computational Linguistics, 3:87–
100.

Yang He. 1988. Extended viterbi algorithm for second
order hidden markov process. In [1988 Proceedings]
9th International Conference on Pattern Recognition,
pages 718–720 vol.2.

Xiao Huang, Li Dong, Elizabeth Boschee, and Nanyun
Peng. 2019. Learning a unified named entity tagger
from multiple partially annotated corpora for efficient
adaptation. In Proceedings of the 23rd Conference on
Computational Natural Language Learning (CoNLL),
pages 515–527, Hong Kong, China. Association for
Computational Linguistics.

Frederik Jelinek. 1997. Statistical Methods for Speech
Recognition. MIT Press.

Rong Jin and Zoubin Ghahramani. 2002. Learning with
multiple labels. In Advances in Neural Information
Processing Systems, volume 15. MIT Press.

Mark Johnson. 2011. Parsing in parallel on multiple
cores and GPUs. In Proceedings of the Australasian
Language Technology Association Workshop 2011,
pages 29–37, Canberra, Australia.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Nikos Komodakis, Nikos Paragios, and Georgios Tziri-
tas. 2011. MRF energy minimization and beyond via
dual decomposition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(3):531–552.

Philipp Kraehenbuehl and Vladlen Koltun. 2013. Pa-
rameter learning and convergent inference for dense
random fields. In Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pages
513–521, Atlanta, Georgia, USA. PMLR.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289. Morgan Kauf-
mann.

Saeed Maleki, Madanlal Musuvathi, and Todd Mytkow-
icz. 2014. Parallelizing dynamic programming
through rank convergence. In ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’14, Orlando, FL, USA, February
15-19, 2014, pages 219–232. ACM.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neural
model for dependency-based semantic role labeling.
In Proceedings of the 21st Conference on Computa-
tional Natural Language Learning (CoNLL 2017),
pages 411–420, Vancouver, Canada. Association for
Computational Linguistics.

R Kipp Martin, Ronald L Rardin, and Brian A Camp-
bell. 1990. Polyhedral characterization of dis-
crete dynamic programming. Operations research,
38(1):127–138.

11

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/BF01417214
https://doi.org/10.1007/BF01417214
https://doi.org/10.1007/978-1-4615-6131-6
https://doi.org/10.1007/978-1-4615-6131-6
https://doi.org/10.1109/PROC.1973.9030
https://doi.org/10.18653/v1/D18-1162
https://doi.org/10.3115/981863.981887
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://doi.org/10.3115/v1/P14-1020
https://doi.org/10.1162/tacl_a_00124
https://doi.org/10.1162/tacl_a_00124
https://doi.org/10.1162/tacl_a_00124
https://doi.org/10.1109/ICPR.1988.28338
https://doi.org/10.1109/ICPR.1988.28338
https://doi.org/10.18653/v1/K19-1048
https://doi.org/10.18653/v1/K19-1048
https://doi.org/10.18653/v1/K19-1048
https://proceedings.neurips.cc/paper_files/paper/2002/file/653ac11ca60b3e021a8c609c7198acfc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/653ac11ca60b3e021a8c609c7198acfc-Paper.pdf
https://aclanthology.org/U11-1006/
https://aclanthology.org/U11-1006/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TPAMI.2010.108
https://doi.org/10.1109/TPAMI.2010.108
https://proceedings.mlr.press/v28/kraehenbuehl13.html
https://proceedings.mlr.press/v28/kraehenbuehl13.html
https://proceedings.mlr.press/v28/kraehenbuehl13.html
https://doi.org/10.1145/2555243.2555264
https://doi.org/10.1145/2555243.2555264
https://doi.org/10.18653/v1/K17-1041
https://doi.org/10.18653/v1/K17-1041

Arthur Mensch and Mathieu Blondel. 2018. Differen-
tiable dynamic programming for structured predic-
tion and attention. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
3462–3471. PMLR.

Yoichi Muraoka. 1971. Parallelism exposure and ex-
ploitation in programs. Ph.D. thesis, University of
Illinois at Urbana-Champaign.

Yu. Nesterov. 2004. Smooth minimization of non-
smooth functions. Mathematical Programming,
103(1):127–152.

Vlad Niculae and Mathieu Blondel. 2017. A regularized
framework for sparse and structured neural attention.
In Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc.

Vlad Niculae, Andre Martins, Mathieu Blondel, and
Claire Cardie. 2018. SparseMAP: Differentiable
sparse structured inference. In Proceedings of the
35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning
Research, pages 3799–3808. PMLR.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4034–4043, Marseille,
France. European Language Resources Association.

Lucas Ondel, Léa-Marie Lam-Yee-Mui, Martin Kocour,
Caio Filippo Corro, and Lukás Burget. 2022. Gpu-
accelerated forward-backward algorithm with appli-
cation to lattice-free mmi. In ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8417–8421.

Giorgio Parisi. 1979. Toward a mean field theory for
spin glasses. Physics Letters A, 73(3):203–205.

Gabriel Peyré and Marco Cuturi. 2019. Computational
optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-
6):355–607.

L. R. Rabiner. 1989. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009),
pages 147–155, Boulder, Colorado. Association for
Computational Linguistics.

Alexander Schrijver. 1986. Theory of linear and integer
programming. Publication Title: Wiley-Interscience
series in discrete mathematics and optimization.

Lawrence Stewart, Francis Bach, Felipe Llinares-Lopez,
and Quentin Berthet. 2023. Differentiable cluster-
ing with perturbed spanning forests. In Advances in
Neural Information Processing Systems, volume 36,
pages 31158–31176. Curran Associates, Inc.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rack-
off. 1983. Fast parallel computation of polynomials
using few processors. SIAM Journal on Computing,
12(4):641–644.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

A. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information Theory,
13(2):260–269.

Martin J Wainwright and Michael I Jordan. 2008.
Graphical models, exponential families, and varia-
tional inference. Foundations and Trends® in Ma-
chine Learning, 1(1–2):1–305.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2020.
AIN: Fast and accurate sequence labeling with ap-
proximate inference network. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6019–6026,
Online. Association for Computational Linguistics.

Pierre Weiss. 1907. L’hypothèse du champ moléculaire
et la propriété ferromagnétique. J. Phys. Theor. Appl.,
6(1):661–690.

J. F. Q. Xipeng. 2009. A new chinese dependency anal-
ysis method based on sequence labeling model. In
Computer Applications and Software.

Nianwen Xue. 2003. Chinese word segmentation as
character tagging. In International Journal of Com-
putational Linguistics & Chinese Language Process-
ing, Volume 8, Number 1, February 2003: Special
Issue on Word Formation and Chinese Language Pro-
cessing, pages 29–48.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen,
and Yoon Kim. 2024. Parallelizing linear transform-
ers with the delta rule over sequence length. In Ad-
vances in Neural Information Processing Systems,
volume 37, pages 115491–115522. Curran Asso-
ciates, Inc.

12

https://proceedings.mlr.press/v80/mensch18a.html
https://proceedings.mlr.press/v80/mensch18a.html
https://proceedings.mlr.press/v80/mensch18a.html
https://doi.org/10.1007/s10107-004-0552-5
https://doi.org/10.1007/s10107-004-0552-5
https://proceedings.neurips.cc/paper_files/paper/2017/file/2d1b2a5ff364606ff041650887723470-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2d1b2a5ff364606ff041650887723470-Paper.pdf
https://proceedings.mlr.press/v80/niculae18a.html
https://proceedings.mlr.press/v80/niculae18a.html
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://doi.org/10.1109/ICASSP43922.2022.9746824
https://doi.org/10.1109/ICASSP43922.2022.9746824
https://doi.org/10.1109/ICASSP43922.2022.9746824
https://doi.org/10.1016/0375-9601(79)90708-4
https://doi.org/10.1016/0375-9601(79)90708-4
https://doi.org/10.1561/2200000073
https://doi.org/10.1561/2200000073
https://aclanthology.org/W95-0107/
https://aclanthology.org/W95-0107/
https://aclanthology.org/W09-1119/
https://aclanthology.org/W09-1119/
https://proceedings.neurips.cc/paper_files/paper/2023/file/637a456d89289769ac1ab29617ef7213-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/637a456d89289769ac1ab29617ef7213-Paper-Conference.pdf
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://doi.org/10.1137/0212043
https://doi.org/10.1137/0212043
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/tit.1967.1054010
https://doi.org/10.1109/tit.1967.1054010
https://doi.org/10.1109/tit.1967.1054010
https://doi.org/10.18653/v1/2020.emnlp-main.485
https://doi.org/10.18653/v1/2020.emnlp-main.485
https://doi.org/10.1051/jphystap:019070060066100
https://doi.org/10.1051/jphystap:019070060066100
https://aclanthology.org/O03-4002/
https://aclanthology.org/O03-4002/
https://proceedings.neurips.cc/paper_files/paper/2024/file/d13a3eae72366e61dfdc7eea82eeb685-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d13a3eae72366e61dfdc7eea82eeb685-Paper-Conference.pdf

Yaosheng Yang, Wenliang Chen, Zhenghua Li,
Zhengqiu He, and Min Zhang. 2018. Distantly su-
pervised NER with partial annotation learning and
reinforcement learning. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 2159–2169, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-
Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du,
Chang Huang, and Philip H. S. Torr. 2015. Condi-
tional random fields as recurrent neural networks. In
2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13,
2015, pages 1529–1537. IEEE Computer Society.

A Dynamic Programming Recursion

This section contains proof of correctness for both
Viterbi and forward algorithms in a single analysis
of the dynamic programming recursion. A popu-
lar technique to this end is based on the semiring
parsing framework (Goodman, 1999). We give
an alternate analysis by following the analysis of
Mensch and Blondel (2018).8

We first prove two properties of the maxΩ oper-
ator for Ω ∈ {0,−H}: associativity, and distribu-
tivity over addition.

A.1 Associativity of maxΩ

We show that:

maxΩ

[
maxΩ(v)
maxΩ(v

′)

]
= maxΩ(u)

for all v ∈ Rd,v′ ∈ Rd′ and u ∈ Rd+d′ where:

ui ≜

{
vi if i ∈ J1, dK ,
v′i−d otherwise,

i.e. u is the concatenation of v and v′.
In the case Ω = 0, we have:

max 0

[
max 0v,
max 0v

′

]
= max 0

[
maxi(vi)
maxi(v

′
i)

]
= max

i
(ui)

= max 0(u)

which proves the property.
In the case Ω = −H , we have:

max−H

[
max−Hv,
max−Hv′

]
8More precisely, what we describe here is exactly their

proof, but under our notation to make our paper self-contained
for newcomers.

= max−H

[
log
∑

i exp(vi)
log
∑

i exp(v
′
i)

]

= log

 ����exp log
∑
i

exp(vi)

+����exp log
∑

i exp(v
′
i)

= log

∑
i

exp(ui)

= max−H(u)

which proves the property.

A.2 Distributivity over addition of maxΩ

We show that:

maxΩ(v + c1) = c+maxΩ(v) ,

for all vectors v ∈ Rd and scalars c ∈ R.
In the case Ω = 0, we have:

max 0(v + c1) = max
i

(vi + c) = c+max 0(v) ,

which proves the property.
In the case Ω = −H , we have:

max−H(v + c1) = log
∑
i

exp(vi + c)

= log
∑
i

exp(vi) exp(c)

= log

(
exp(c)

∑
i

exp(vi)

)
= c+ log

∑
i

exp(vi)

= c+max−H(v) ,

which proves the property.

A.3 Correctness Proof
We now turn to the proof of the recursion.9 By
definition, we have:

ci,t(w) = maxΩ

[∑i−1
j=1⟨wj , ϕ(x)j⟩

]
x∈Xi|xi=t

,

where the regularized maximum is taken on all
tag sequences from the beginning until position i,
where position i is constrained to be tagged with
t ∈ T . We can split the sum by extracting the term
that weights the last transition:

= maxΩ

i−2∑
j=1

⟨wj , ϕ(x)j⟩

+⟨wi−1, ϕ(x)i−1⟩

x∈Xi|xi=t

,

9We stress out that this proof is only true for Ω ∈ {0,−H},
see (Mensch and Blondel, 2018, Proposition 2)

13

https://aclanthology.org/C18-1183/
https://aclanthology.org/C18-1183/
https://aclanthology.org/C18-1183/
https://doi.org/10.1109/ICCV.2015.179
https://doi.org/10.1109/ICCV.2015.179

which can be equivalently written as a regularized
maximum over sequences in Xi−1 as follows:

= maxΩ

i−2∑
j=1

⟨wj , ϕ(x)j⟩

+wi−1,xi−1,t

x∈Xi−1

.

Thank to associativity property of maxΩ, we can
“split” the operation over |T | regularized maxi-
mums plus one that aggregates the results:

= maxΩ

maxΩ

i−2∑
j=1

⟨wj , ϕ(x)j⟩

+wi−1,t′,t

x∈Xi−1

|xi−1=t′

t′∈T

.

Finally, using distributivity over addition we extract
the term wi−1,t′,t and obtain the recursive formula-
tion used by the dynamic programming algorithm:

= maxΩ

wi−1,t′,t

+maxΩ

 i−2∑
j=1

⟨wj , ϕ(x)j⟩

x∈Xi−1

|xi−1=t′

t′∈T

= maxΩ
[
wi−1,t′,t + ci−1,y′(w)

]
t′∈T .

B Variational Formulation of the
Log-Partition Function

Let v ∈ Rd be a vector. In this appendix, we prove
the variational formulation of the log-partition func-
tion, that is:

log
∑
i

exp vi = max
µ∈△(d)

⟨v,µ⟩ − ⟨µ, logµ⟩

= max−H(v),

or, in other words, that the Shannon entropy func-
tion restricted to the simplex is the Fenchel con-
jugate of the logsumexp function. This results is
well-known, see (Boyd and Vandenberghe, 2004,
Example 3.25) and (Beck, 2017, Section 4.4.10),
among others.

We start by explicitly writing the mathematical
program:

max
µ∈Rd

⟨v,µ⟩ − ⟨µ, logµ⟩

s.t. ⟨µ,1⟩ = 1

µ ≥ 0

Dualizing the constraints gives the following La-
grangian function:

L(µ, λ,ν) =⟨v,µ⟩ − ⟨µ, logµ⟩
+ λ(1− ⟨µ,1⟩) + ⟨ν,µ⟩,

where λ ∈ R and ν ∈ Rd
≥0 are dual variables

associated with the equality and inequalities, re-
spectively.

As the objective is concave and all constraints
are linear, µ̂, λ̂ and ν̂ are optimal primal and dual
variables if and only if they satisfy the KKT condi-
tions (Boyd and Vandenberghe, 2004, Sec. 5.5.3).
By stationarity, we have:

∂

∂µ̂i
L(µ̂, λ̂, ν̂) = 0

log µ̂i = vi − λ̂+ µ̂i

µ̂i = exp(vi − λ̂+ µ̂i).

Note that µ̂i > 0 and by complementary slackness
we must have ν̂iµ̂i = 0, therefore ν̂i = 0, and we
can write:

µ̂i =
exp(vi)

exp(λ̂)
.

By primal feasilibty, we have:

⟨µ̂,1⟩ = 1∑
i

exp(vi)

exp(λ̂)
= 1

exp(λ̂) =
∑
i

exp(vi),

and therefore:

µ̂i =
exp(vi)∑
j exp(vj)

.

Plugging the optimal primal variables in the objec-
tive, we obtain:

⟨v, µ̂⟩ − ⟨µ̂, log µ̂⟩ = log
∑
i

exp vi.

C Subgradient of the Fenchel Conjugate

First, note that Eq. (6) can be rewritten as the
gradient of a Fenchel conjugate. Indeed, the log-
partition function can be rewritten as:

AY (w) = max
q∈conv(Y)

⟨q,w⟩ −R(q)

=
(
−R+ δconv(Y)

)∗
(w).

14

Therefore, we give a simple proof of the
(sub)gradient of the Fenchel conjugate, which is
used to derive the formula of marginal probabilities
for CRF and BCRF. Although this can be proved
via Danskin’s theorem (Danskin, 1966; Bertsekas,
1999), we give here a simple alternate proof.

Let h : Rd → R ∪ {∞} be a function. We first
note that the Fenchel conjugate of h is convex as
it is the maximum of a set of affine functions, no
matter if f is convex or not.

Proposition 4. Let h : Rk → R ∪ {∞} be a
function and v ∈ domh∗. Then, the follow-
ing formula can be used to build a subgradient
of h∗ at v:

∂h∗(v) ⊇ argmax
t∈domh

⟨t,v⟩ − h(t).

Moreover, if h∗ is differentiable at v, ∂h∗ is a
singleton (Beck, 2017, Th. 3.33).

Proof. Let t̂ be defined as follows:

t̂ ∈ argmax
t∈domh

⟨t,v⟩ − h(t).

We have t̂ ∈ ∂h∗(v) if and only the subgradient
inequality holds (Beck, 2017, Def. 3.1), that is:

∀v′ ∈ domh∗ : h∗(v′) ≥ h∗(v) + ⟨t̂,v′ − v⟩.

Starting from the right-hand side, for all v′ ∈
domh∗, we can write:

h∗(v) + ⟨t̂,v′ − v⟩
=���⟨t̂,v⟩ − h(t̂) + ⟨t̂,v′⟩ −���⟨t̂,v⟩

where we simply replaced h∗(v) by its definition
using the fact that t̂ is a solution of the maximiza-
tion problem. We derive an upper bound on this
formula by maximizing over possible values for t:

= ⟨t̂,v′⟩ − h(t̂)

≤ max
t∈domh

⟨t,v′⟩ − h(t)

= h∗(v′)

Hence the subgradient inequality holds, and t̂ is a
subgradient of h∗ at v.

D Proof of Proposition 1

Linear programming with entropic regularization
is a well-studied setting (Fang, 1992; Fang et al.,
1997). Nonetheless, we adapt the proof of (Peyré
and Cuturi, 2019, Prop. 4.1) to our problem for
completness.

Proof. In this proof, we will write:

ŷ ∈ argmax
y∈conv(Y)

⟨w,y⟩

and µ̂(τ) = argmax
y∈conv(Y)

⟨w,y⟩+ τH(y)

= ∇BY (τ
−1w).

By optimality of ŷ, we have:

⟨w, ŷ⟩ ≥ ⟨w, µ̂(τ)⟩
⇐⇒ 0 ≤ ⟨w, ŷ⟩ − ⟨w, µ̂(τ)⟩.

Similarly, by optimality of µ̂(τ):

⟨w, µ̂(τ)⟩+ τH(µ̂(τ)) ≥ ⟨w, ŷ⟩+ τH(ŷ)

⇐⇒ ⟨w, ŷ⟩ − ⟨w, µ̂(τ)⟩ ≤ τ(H(µ̂(τ))−H(ŷ))

Combining the two inequalities, we have:

0 ≤ ⟨w, ŷ⟩ − ⟨w, µ̂(τ)⟩ ≤ τ (H(µ̂(τ))−H(ŷ))︸ ︷︷ ︸
≥0

Notice that for any τ > 0, we have H(µ̂(τ)) ≤ c
where c > 0 is a constant. Therefore:

lim
τ→0

τ(H(µ̂(τ))−H(ŷ)) = 0.

We can therefore apply the squeeze theorem:

lim
τ→0

(
⟨w, ŷ⟩ − ⟨w, µ̂(τ)⟩

)
= 0

⇐⇒ lim
τ→0
⟨w, µ̂(τ)⟩ = ⟨w, ŷ⟩,

which ends the proof.

E Proof of Proposition 2

Proof. Denote by P the polytope on the right-hand
side of the theorem statement. Since there is a one-
to-one correspondence between valid paths and
binary points of P , it remains to prove that P is
integral.

Consider the directed graph G′ = (V ′, E′) ob-
tained from G by adding two nodes s and t, an
arc (s, v) for all v ∈ V1, an arc (v, t) for v ∈ Vn,
and the arc (t, s). By construction, every point y
of P can be extended to a point of the following
polytope:

Q =

y ∈ RE′
+

∣∣∣∣∣∣
yts = 1,
∀v ∈ V ′ :

∑
a∈δ+(v) ya

=
∑

a∈δ−(v) ya

by setting y(t,s) = 1, y(s,v) =

∑
a∈δ+(v) ya for all

v ∈ V1, and y(v,t) =
∑

a∈δ−(v) ya for all v ∈ Vn.
Hence, Q is an extended formulation of P (Con-
forti et al., 2013). Since Q is integral (Schrijver,
1986, p. 274), so is P .

15

F Iterative Bregman Projections

Recall that conv(Y) = Ceven ∩ Codd and solving
the projections on Ceven and Codd decompose into
solving several problems of the form:

min
q|δ(Vi)∈Ci

DKL

(
q|δ(Vi),w|δ(Vi)

)
,

for some i ∈ J2, n − 1K. This latter problem can
be reformulated as:

max
q

∑
a∈δ(Vi)

(
(wa + 1)qa − qa log qa

)
(9)

s.t.
∑

a∈δ−(v)

qa =
∑

a∈δ+(v)

qa, ∀v ∈ Vi, (10)

∑
a∈δ−(Vi)

qa = 1, (11)

q ≥ 0 (12)

Therefore, in the following we show that this prob-
lem has a closed-form expression.

Dualizing Constraints (10) and (11) gives the
following Lagrangian function:10

L(q,λ, ν) =
∑

a∈δ(Vi)

(
(wa + 1)qa − qa log qa

)

+
∑
v∈Vi

λv

 ∑
a∈δ−(v)

qa −
∑

a∈δ+(v)

qa

+ ν

 ∑
a∈δ−(Vi)

qa − 1

 .

For fixed λ and ν, the associated Lagrangian re-
laxed problem L(λ, ν) is:

L(λ, ν) = max
q
L(q,λ, ν), (13)

and the Lagrangian dual problem L is:

L = min
λ,ν
L(λ, ν). (14)

Since (9) is concave, strong duality holds, that is,
the optimum of (9)-(12) equals the one of L. More-
over, an optimal solution q̂ of (9)-(12) and an op-
timal λ̂, ν̂ of L satisfy the KKT conditions (Boyd
and Vandenberghe, 2004, Sec. 5.5.3).

The stationarity condition for a ∈ δ−(v) implies
that:

∂

∂qa
L(q̂, λ̂, ν̂) = 0

10For a sake of simplicity, we ignore inequalities q ≥ 0
as by (15) and (16), q is nonnegative for all λ, ν, following
similar argument to the one in Appendix B.

log q̂a = wa + λ̂v + ν̂

q̂a = exp(wa) exp(λ̂v) exp(ν̂). (15)

Similarly, the stationarity condition for a ∈ δ+(v)
implies that:

∂

∂qa
L(q̂, λ̂, ν̂) = 0

log q̂a = wa − λ̂v

q̂a =
exp(wa)

exp(λ̂v)
(16)

At optimality, q̂ is primal feasible. Hence, it satis-
fies (10) so we have for all v ∈ Vi:∑
a∈δ−(v)

exp(wa) exp(λ̂v) exp(ν̂) =
∑

a∈δ+(v)

exp(wa)

exp(λ̂v)
,

which gives:

λ̂v =
1

2
logw+(v)− 1

2
logw−(v)− 1

2
ν̂, (17)

where:

w+(v) =
∑

a∈δ+(v)

exp(wa)

and w−(v) =
∑

a∈δ−(v)

exp(wa).

Since q̂ satisfies (11), we have∑
v∈Vi

∑
a∈δ−(v)

exp(wa) exp(λ̂v) exp(ν̂) = 1.

By (17), we get:

exp

(
−1

2
ν̂

)
=
∑
v∈Vi

w−(v) exp
(
σ(v)

)
where:

σ(v) =
1

2
logw+(v)− 1

2
logw−(v).

for all v ∈ Vi. This gives:

ν̂ = −2 log

∑
v∈Vi

w−(v) exp(σ(v))

 . (18)

Finally, replacing λ̂ and ν̂ by their value given by
(17) and (18) in the formulas (15) and (16) gives:

q̂(u,u′)

=

exp(w(u,u′))

exp(σ(u))
(∑

v∈Vi
w−(v) exp(σ(v))

) if u ∈ Vi,

exp(w(u,u′)) exp(σ(u
′))∑

v∈Vi
w−(v) exp(σ(v)) if u′ ∈ Vi,

for all (u, u′) ∈ δ(Vi).

16

G Mean Field Theory

Mean field (MF) approximation for CRF (Wain-
wright and Jordan, 2008; Zheng et al., 2015; Wang
et al., 2020) is a general method which aims at ap-
proximating a MRF with a tractable distribution, in
the case of tagging approximate a linear-chain CRF

with a factorized distribution (the so-called naive
MF) of the form:

r(x|s) =
∏
i

ri(xi|s).

The main idea is to search for the factorized dis-
tribution that is the closest to the CRF distribu-
tion p(·|s) in terms of their Kullback-Leibler diver-
gence (Wainwright and Jordan, 2008, Chap. 5.2.2):

argmin
r

DKL(r(·|s), p(·|s)).

Even if it’s not necessarily obvious at first glance,
the key advantage of this approach is that the log-
partition term AY appears as a constant in the objec-
tive, hence there is no need to rely on the forward
algorithm to search for the optimal MF distribution.

MF inference is often implemented using iter-
ative parallel updates. Starting from a any dis-
tribution r0, each iteration computes an updated
distribution as follows:

rki (t)←
exp

(
m(i, t, k)

)∑
t′ exp

(
m(i, t′, k)

) ,
where variables m are “messages” incoming from
adjacent tag distributions defined as follows::

m→(i, t, k) = Et′∼rk−1
i−1 (·)[fθ(s)i−1,t′,t]

m←(i, t, k) = Et′∼rk−1
i+1 (·)[fθ(s)i,t,t′]

m(i, t, k) = m→(i, t, k) +m←(i, t, k).

Since the MF inference objective is non-convex,
the quality of this method relies on the initial dis-
tribution. Moreover, the parallel update procedure
is not guaranteed to converge (Kraehenbuehl and
Koltun, 2013).

Note that given the update formulas, MF cannot
take into account well-formedness constraints, i.e.
we cannot forbid adjacent pair of tags by removing
transitions or setting transition weights to −∞.

H Partial Fenchel-Young Losses

In this appendix, we prove several properties of
partial FY losses that motivate their use for learning
from partial labels.

Generalization of FY losses. If Ỹ = {y} is
a singleton containing only a gold label, then
ℓ̃Ω(w, {y}) = ℓΩ(w,y).

Proof. When Ỹ = {y} is a singleton, we have
conv(Ỹ) = {y} and therefore:

ℓ̃Ω(w, {y})
=
(
Ω+ δconv(Y)

)∗
(w)−

(
Ω+ δ{y}

)∗
(w)

=
(
Ω+ δconv(Y)

)∗
(w)

−

(
sup

µ∈domΩ
⟨µ,w⟩ − Ω(µ)− δ{y}(µ)

)
.

Note that the indicator function restrict the search
space of the maximization to a single element y,
therefore:

= Ω∗(w)− ⟨µ,y⟩+Ω(y)

= ℓΩ(w, y),

which ends the proof.

Non-negativity. The loss is bounded below by 0.

Proof. Note that we have:(
Ω+ δ

conv(Ỹ)

)∗
(w)

= sup
µ∈domΩ

⟨µ,w⟩ − Ω(µ)− δ
conv(Ỹ)

(µ).

The indicator function act as a constraint on µ.
By definition we have Ỹ ⊂ Y , and therefore by
increasing the search space we derive an upper
bound:

≤ sup
µ∈domΩ

⟨µ,w⟩ − Ω(µ)− δconv(Y)(µ)

=
(
Ω+ δconv(Y)

)∗
(w).

Therefore, the loss is non-negative.

Smaller partial labeling set =⇒ bigger loss.
Let Ỹ ′ ⊆ Ỹ , then:

ℓ̃(w; Ỹ ′) ≥ ℓ̃(w; Ỹ).

Proof. Note that if Ỹ ′ ⊆ Ỹ , then conv(Ỹ ′) ⊆
conv(Ỹ). By definition, we have:

ℓ̃Ω(w; Ỹ ′)

=
(
Ω+ δconv(Y

)∗
(w)−

(
Ω+ δ

conv(Ỹ ′)

)∗
(w)

=
(
Ω+ δconv(Y)

)∗
(w)

17

−

(
sup

µ∈domΩ
⟨µ,w⟩ − Ω(µ)− δ

conv(Ỹ ′)(µ)

)
.

If we maximize over a larger set, the second term
will be larger therefore:

≥
(
Ω+ δconv(Y)

)∗
(w)

−

(
sup

µ∈domΩ
⟨µ,w⟩ − Ω(µ)− δ

conv(Ỹ)
(µ)

)
=ℓ̃Ω(w; Ỹ),

which ends the proof.

I Neural Network Hyperparameters

We use standard self-attentive networks with em-
bedings of size 768, 8 heads per layers and hidden
dimension projection of 2048. The model are train-
ing using the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 3 × 10−4 when the
transformer is learned from scratch, and 3× 10−5

when fine-tuning BERT. We use a linear rate sched-
uler with warmup on 10% of updates.

For part-of-speech tagging, we sum character-
level embedding to word-level embedding at the
input of the transformer, where the character level
embeddings are obtained using a simple 1D convo-
lution layer.

18

	Introduction
	Background
	Conditional Random Fields
	The Viterbi and Forward Algorithms

	Bregman Conditional Random Fields
	Mean Regularization
	Marginal Polytope
	Iterative Bregman Projections

	Loss Functions
	Supervised Learning
	Learning with Partial Labels

	Related Work
	Experiments
	Part-of-Speech Tagging
	Word Segmentation and POS Tagging
	Named-Entity Recognition
	Speed Improvement

	Conclusion
	Dynamic Programming Recursion
	Associativity of
	Distributivity over addition of
	Correctness Proof

	Variational Formulation of the Log-Partition Function
	Subgradient of the Fenchel Conjugate
	Proof of Proposition 1
	Proof of Proposition 2
	Iterative Bregman Projections
	Mean Field Theory
	Partial Fenchel-Young Losses
	Neural Network Hyperparameters

