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Abstract

Several previous works concluded that the
largest part of generation capabilities of large
language models (LLM) are learned (early) dur-
ing pre-training. However, LLMs still require
further alignment to adhere to downstream task
requirements and stylistic preferences, among
other desired properties. As LLMs continue to
scale in terms of size, the computational cost of
alignment procedures increase prohibitively. In
this work, we propose a novel approach to cir-
cumvent these costs via proxy-based test-time
alignment, i.e. using guidance from a small
aligned model. Our approach can be described
as token-specific cascading method, where the
token-specific deferral rule is reduced to 0-1
knapsack problem. In this setting, we derive
primal and dual approximations of the optimal
deferral decision. We experimentally show the
benefits of our method both in task performance
and speculative decoding speed.

1 Introduction

Large language models’ (LLM) alignment! is em-
ployed for reshaping the pre-trained model’s output
distribution so that it adheres to expected (human)
preferences, formatting or instructions, and more
generally downstream task requirements (Bai et al.,
2022; Kumar et al., 2025; Ouyang et al., 2022).
A variety of fine-tuning approaches are employed
with different computational requirements and over-
heads, such as reinforcement learning from human
feedback (RLHF, Ziegler et al., 2020; Rafailov
et al., 2023; Ethayarajh et al., 2024). The alignment
phase follows an already costly pre-training phase,
and alignment costs scale prohibitively with model
sizes, meaning that tailoring LLMs for diverse real-
world scenarios is challenging. For example, the
RLHEF stage of Tulu 3 scales from 520 H100 GPU

'The term “alignment” has several different meanings in
the literature. In this work, we call alignment the supervised
training process of a LLM following the (~unsupervised) pre-
training phase.
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hours for the 8B model to 2 880 hours for the 70B
model and to 11 776 hours for the 405B model, fol-
lowing an exponential trend (Lambert et al., 2025)

To avoid paying the high cost of fine-tuning
a large model, previous works have proposed to
adapt the pre-trained model’s output distribution at
test-time (Welleck et al., 2024), using external guid-
ance either from a reward signal (Deng and Raffel,
2023; Troshin et al., 2025), implicitly extracting the
reward from a small aligned model (Liu et al., 2024;
Mitchell et al., 2024) or using a mixture of a large
unaligned model and a small aligned model (Lu
et al., 2023; Fei et al., 2025). As such, when novel
alignment specifications are needed, one only need
to either train a (simple) reward or align a small
model, drastically reducing alignment time, costs
and even lowering the hardware requirement.

In this work, we follow the proxy-based align-
ment methodology where an unaligned large model
distribution is “distorted” at test-time using a small
aligned model. One of the motivations of test-time
alignment is that previous analysis has shown that
most of a LLM’s generation capabilities is acquired
during pre-training (Zhou et al., 2023), making the
following steps mostly intervene on stylistic and
transitional tokens positions (Chang et al., 2024;
Hu et al., 2024). Following this observation, Fei
et al. (2025) proposed to use the large model’s con-
fidence as an alignment indicator: if the unaligned
large model distribution has a low-entropy, the next
token is sampled from it, otherwise the generation
is deferred to a smaller aligned model that assists
in “nudging” the response.

Our main contribution is a novel framework for
proxy-based alignment. Instead of fully deferring
the decision to the small model when the large one
has a high entropy, we build a mixture distribution
of the two models. Our intuition is as follows: we
should defer the decision to the small model for
low-probability tokens. We model this deferral rule
as a binary knapsack problem (Martello and Toth,



1990), were one may fix a maximum mass (bud-
get) of probability whose decision can be deferred
to the small model. As the binary knapsack prob-
lem is known to be intractable (Karp, 1972), we
propose dual and primal approximations of the opti-
mal deferral condition. Overall, this framework al-
lows us to derive several deferral rules (depending,
for example, on the loss function used to measure
the quality of generations), including the nudging
model of Fei et al. (2025). Our approach, while
adding more degrees of freedom to the deferral
rule, allows to focus deferral on specific uncertain
tokens, leveraging richer token-level information
rather than a single global confidence score. We fur-
thermore show experimentally that token-specific
deferral decision is faster than distribution-level de-
cision in comparable speculative decoding setups.
Our contributions can be summarized as follows:
(1) we introduce KAD (knapsack approximation
deferral), a framework for proxy-based alignment;
(2) we derive several dual and primal approximate
solutions and provide theoretical guarantees on the
regret and error-rate achieved by them while link-
ing our propositions with previous work; (3) we
experiment with OLMo 2 and Qwen 3, showing
the performance improvement brought by our ap-
proach compared to several baselines; and (4) we
show our method leads to increased generation
speed when combined with speculative decoding.
Our implementation is publicly available.>

Notations. We write Iverson brackets as [-], tak-
ing the value 1 if the inner condition is true and 0
otherwise. For any k£ € N>, A(k) is the (k — 1)-
dimensional simplex. To simplify notations, we
denote the token vocabulary as V' = {1,...,|V|}.
An autoregressive language model is a condi-
tional distribution of the next token given the pre-
viously generated ones. Let p be such a language
model, we can then write the next token distribution
as p(x¢|x1:4—1 = @®14—1). To simplify notations,
we will drop the dependence on history x;.;—1 and
write the model’s conditional probability distribu-
tion as a vector p € A(|V|) defined as follows:

Py = p(Xt = U!X1:t71 = $1:t—1),

i.e. p, is the probability of token v given history
x1.4—1. More generally, all variables and functions
presented are assumed to be context-dependent un-
less stated otherwise.

2h'ctps ://github.com/ayoubhammal/
knapsack-approximation-deferral

2 Motivations

The term base® language model (LM) refers to an
LM that has not undergone specific instruction or
preference tuning via supervised fine-tuning, rein-
forcement learning from human feedback (RLHF),
or any other related methods. A model resulting
from the latter procedures is called an aligned LM.

For the purpose of this paper, we will consider
models of different sizes and at different training
stages. We denote p and p* a large LM in its
base and aligned variants, respectively. Similarly,
q and g refer to small (base and aligned) LMs,
where “small” means that generation with these
models is significantly faster than with the large
ones. Note that p, p*, g and g* are used to denote
both language models and associated conditional
distribution vectors. The only extra assumption we
introduce is that the large and small LMs share the
same tokenization vocabulary.

2.1 Background

In order to avoid high alignment costs, there is
an interest in test-time alignment, where a large
base LM is guided to achieve desired outputs di-
rectly during generation, without extra tuning steps.
Proxy tuning is one such approach, where a small
language model is aligned and is used to guide the
large one (Liu et al., 2024; Mitchell et al., 2024).

Interestingly, several authors hypothesized that
the alignment training phase mainly impacts style,
discourse structure, and other superficial features,
but that most of the actual “knowledge” is ac-
quired during the base model training (Zhou et al.,
2023; Chang et al., 2024; Hu et al., 2024). Lin
et al. (2024) showed that the alignment procedure
changes the base distribution only for a few out-
put positions. In particular, transitional and struc-
tural positions are shifted toward more stylistic to-
kens such as those showing agreement, e.g. “of
course”, or positivity, e.g. “great question”,
conveying less information but helping set the tone
of the response.

Fei et al. (2025) further show that the base
model’s certainty is tightly related to the agree-
ment between the base and aligned models’ distri-
butions: the top predictions of both models tend
to agree more when the base model’s top probabil-
ity is higher. From this observation, they propose
nudging the base model’s generation when its cer-
tainty falls below a specific threshold A € R>, that

3Also called pre-trained language model.
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is, sampling from ¢* only for positions where p is
uncertain. In other words, the sampling procedure
for the next token is:*

* if max, p, > A, sample from p;
* otherwise, sample from ¢*.

2.2 Broader Perspective

Nudging can be interpreted as a specific case of
model cascades, an ensembling technique that re-
lies on a sequence of classifiers: each classifier in
the sequence can choose to either return the predic-
tion or defer the prediction to the next model in the
sequence (Narasimhan et al., 2025; Varshney and
Baral, 2022; Wang et al., 2018; Li et al., 2021).

First, notice that we can rewrite the nudging
procedure as sampling from a mixture distribution
¢ € A(]V]) defined as follows:

by = gy if maxy, py < A, 0
! p, otherwise.

The condition max,, p,, < A is the position-
dependent deferral rule, whose value indicates the
deferral decision, that is when the first model in the
cascade p must defer the decision to the (single)
next model g*.

From this perspective, we see that nudging as
proposed by Fei et al. (2025) is a special case of
model cascades with a sequence of 2 classifiers,
where the second model g* is invoked when the
first p is uncertain, a condition which is imple-
mented using the so-called Chow’s rule (Chow,
1970; Jitkrittum et al., 2023; Gupta et al., 2024).
As such, an obvious question is whether we can
use different deferral rules.

3 Knapsack Approximation Deferral

As described in the previous section, the nudging
technique for proxy-based alignment can be inter-
preted as a specific case of cascading. Based on this
observation, we first introduce a framework that al-
lows to derive token-specific mixtures for test-time
alignment based on a loss function that measures
the base model’s uncertainty, and a maximum de-
ferral budget. Then, we propose two approximation
methods of the optimal deferral decision.

“In Fei et al. (2025), the nudging step generates the next
word until the following space instead of a single token.

3.1 Formalization

We seek to build a mixture distribution 7 using
a token-specific deferral decision d € {0,1}V!
(Narasimhan et al., 2025):

—dy) + g 2

where « is a normalization term that ensures the
distribution 7 is well-defined:

a= Z Py -

The deferral decision d allows to defer decision to
q independently for each token, and as such gener-
alizes the nudging procedure described in Sec. 2.2.

We are now left with defining rules used to com-
pute the deferral decision vector d. As explained
in Sec. 2.1, alignment seems to only shift the prob-
ability of a few tokens, especially when the model
is unsure about an outcome. To measure the un-
certainty about a specific output, we rely on a loss
function ¢ : A(k) x V' — R>o. We define the risk
(Shalev-Shwartz and Ben-David, 2014) associated
with d as:

T(d) - Z Pvg(pa U)(l - dv)7

veV

Ty = pv(l

where P, = P(x; = v|x1.4-1 = @®1.4-1) is the
(unknown) ground-truth target distribution.
Notice that naive risk minimization leads to a
trivial deferral decision as (1) = 0, i.e. ignoring
the base model p and deferring the outcome to g*
only. Instead, we assume a maximum deferral bud-
get b > 0, that is the maximum probability mass
that can be ignored in p. We obtain the following
constrained risk minimization problem:

(P1) r(d) st Y Pudy <.
veV

min
de{0,1}IVI

We denote d an optimal solution of (P1).

Lemma 1. Computing the optimal deferral
rule d is NP-Hard.

The lemma can be proved by observing that (P1)
is equivalent to the 0-1 knapsack optimization prob-
lem, which is known to be NP-Hard (Cacchiani
et al., 2022). Although exact dynamic program-
ming algorithms are known for solving this prob-
lem, their worst-case complexity is exponential
in the vocabulary size (Martello and Toth, 1990;
Pisinger, 1997; Martello et al., 1999). Therefore,
we will instead rely on fast dual and primal approx-
imations, which are guaranteed to define bounds
on the optimal risk.
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Figure 1: Illustration of token-specific cascading distribution 7w <* with A = 0.4. The left and center plots show the
probability mass function (PMF) of p and q*, respectively. The right plot shows the PMF of 7<*, where the blue
parts shows the mass coming from p and the red parts the one coming from g* (including rescaling by «). Dotted
bars show that mass from p that was rejected by the deferral decision. We can observe the most probable token of p
and the one of g* both have high probabilities in the resulting mixture.

3.2 Dual Approximation

In this section, we introduce a first approximation
based on duality. This approximation does not rely
on the ground-truth distribution P.

By relaxing the budget constraint, we build the
following Lagrangian (Lemaréchal, 2001):

L(dvﬂ):T(d)+N<ZPvdv_b>a

veV

where 11 € R>q is called a Lagrangian multiplier
or dual variable. In other words, the hard constraint
has been replaced by a penalty in the objective.
Our dual approximation is simply defined as a dual
solution for a given multiplier p:

d~ (1) € argmin L(d, ).
de{0,1}V]

Note that d~ (1) € RIV! may not be primal feasi-
ble, i.e. it may not satisfy the budget constraint.

Lemma 2. For any dualAvariable w > 0, the
deferral decision vector d~ (u) is defined as:

YoeV: [c?_(,u)]v = [¢(p,v) > p].

where the right-hand side condition is called
the deferral condition. Moreover, the follow-
ing bound on the true risk holds:

L(d" (). 1) < r(d).

Proof of Lemma 2 can be found in Appendix A.
For the negative log-likelihood (or logistic) loss,
we can rewrite the dual approximation as follows:

[ ()] =T-1ogp0 > ul = Ipe < exp(—p)].

Loss ((p,v) [d ()]

v
Logistic —log py [po < exp(—p)]
Squared (1 —py)? [po <1 —/n]
Perceptron —p, + maxy pw  [Po < MaXy Puw — 4]
0-1 [v ¢ argmax,, pw]  [Po < MaxXyw Duw]
Min-ent. —log maxy pw  [Maxw pw < exp(—p)]

Table 1: Different losses and their associated deferral
rules in the dual approximation scenario. For the 0-1
loss, we assume that € (0,1).

For any loss of the form ¢(p, v) = f(p,) where f
is continuous and strictly decreasing, we have:

W] =o<srwl o

To simplify notation, we will denote 7v<* the dis-
tribution given by such decision rule:

7ru<)\:pv X [[va)\]]-f—q:Oé,

where A\ = f~1(u). Figure 1 illustrates such a
mixture.

Further examples with different losses are pre-
sented in Table 1 and their derivations in App. B.

Chow’s rule. 'We now show that our framework
generalizes the nudging method of Fei et al. (2025).
Consider the min-entropy loss function (Renner
and Wolf, 2004) defined as follows:

{(p,v) = —log max py -

Note that this loss function is unsupervised, in the
sense that the loss value does not depend on the
gold token v. With this loss, the deferral decision
is:

()]

which is Chow’s rule used for nudging, which we
recover here as a dual approximation.

= < i
[[glggpw exp(—pu)],

v



3.3 Primal Approximation

The proposed dual approximation does not depend
on P, but requires setting a hyperparameter. In
this section, we derive a method to build a primal
feasible solution using the Lagrangian dual prob-
lem. As computing the solution requires access to
the ground-truth distribution, we rely on a plug-in
approximation of [P in practice.

From Lemma 2, we know that for any ;1 € R>,
the Lagrangian gives a lower bound to the optimal
risk. As such, we seek the dual variable value [
that maximizes this bound:

p € argmax L),
n>0

where L(p) = minge g 1yvi L(d, p).

Lemma 3. Wlog, we assume the vocabulary
is sorted in increasing loss order, that is:
Yo,weV: v<w = {p,v) <{(p,w).

Let k be defined such that the following con-
dition holds:

14 14
Z P, <b< Z]P’ 4)
v= k+1

Then, we have i = ﬁ(p,E). We call k the
critical element index.

The proof can be found in Appendix C.
The primal approximation is then defined as:
d" =d ().

As df = [¢(p,v) > £(p, k)], and assuming that
the vocabulary is sorted in increasing loss order,
we can see that the following inequality holds:

v
d diP,= > P,<b
veV v=k—+1

Thus d* is primal feasible, and the following
bound holds:

~

r(d) < r(c?r).

Plugin approximation. Unfortunately, comput-
ing the critical element index k requires access
to the ground-truth data distribution P, which is
unknown. Therefore, we follow the methodology

of Narasimhan et al. (2025) and use a plugin ap-
proximation of P, that is we rely on p as an ap-
proximation of P. More precisely, we compute an
approximation / of the optimal Lagrangian multi-
plier using an approximation of the critical index
element k:

V] V]
ii=(pk) st > py§b<2pv
v= k+1

The primal approximation d+ = d- (1) of the
deferral rule is defined as follows:’

[¢(p,i) > K]

3.4 Theoretical Analysis

VUGV:JZF:

In this section, we show some theoretical properties
of primal approximations.

First, it is interesting to note that the previously
considered decreasing loss functions all produce
the same primal approximation as per Lemma 4.
Therefore, although there is an interest of evaluat-
ing different losses for the dual approximation, the
primal one always lead to the same deferral rule
for a wide class of losses (Lemma 4). Second, we
show that the quality of the approximation using p
as a plugin estimator depends on the total variation
distance between p and P (Lemma 5).

Lemma 4. A loss function /¢ is order inverting
if, Vv, w € V, we have:

w) < £(p,v).

Let ¢1 and /5 be two order inverting losses.
Then, ¢; and /5 produce the same critical el-
ement index k and the same approximation
k. Moreover, they produce the same deferral
decision d*, and the same approximation d-.

Do < Pw —— E(p,

Lemma S. The following bound on the risk
holds:

[r(d*) — r(d")| < Up,u) (DTV(RP) )

l
+ 2= P

where | = min(@, k)+landu = max(@, k).
Moreover, we have:

r(d*) —r(d) < ((p, k)P

Proofs are given in Appendices E and F.

>Pseudo-code is given in Appendix G.



4 Speculative Decoding

In the nudging approach of Fei et al. (2025), they
only need to forward in the large model p when
its certainty is high, and calls to g* are limited to
a few tokens for which the decision is deferred to
it, see Equation (1). On the contrary, our mixture
distribution defined in Equation (2) relies on both
p and g* as soon as there is a single element of the
deferral decision equal to 1. Hence, a naive use of
our approach will lead to a slower generation.

In this section, we propose to accelerate genera-
tion using speculative decoding (Leviathan et al.,
2023; Chen et al., 2023), a two step sampling pro-
cess. First, in the drafting step, a draft model is used
to samples a draft of v € Z~ tokens. Then, in the
verification step, token are sequentially accepted
using a target model, until one token is rejected.
The resulting sampling process is guaranteed to
match the target model distribution. In practice,
the draft model is assumed to be small and fast,
whereas the target model is large and slow. The
forward pass in the target model can be efficiently
parallelized over all tokens in the draft instead of
generating tokens autoregressively, which leads to
experimental speed improvement. We refer readers
to (Leviathan et al., 2023) for further details.

In our case, the target distribution is the mix-
ture 7r, and the proposal distribution is the aligned
model g*. The probability a(w,q*) € [0,1] of
accepting the next token in the draft is equal to:

a(m,q*) =1 — Dyy(m,q").

As such, a lower divergence between the target and
the draft models means a higher acceptance proba-
bility, and therefore a faster speculative procedure.

Lemma 6. The following bound on
Dy (7, @*) holds:

DTV(ﬂ-<)\) q*) S DTV(¢; q*) + Oé(]_ - 5)7

where 8 =) duq;.
Moreover, if the following condition are
satisfied:

1. maxyey py > A,
2. V'U:pru<A — pvgaqz,

then, the following bound holds:

TV (<, q*) < Drv(,q").

The proof can be found in Appendix H. Lemma 6
shows that even if our mixture distribution 7v<* is
more expressive than the nudging distribution ¢,
the speculative decoding process will only have
a slightly lower acceptance rate, as a(1—f) <
1. The second part of theorem even show that
in many cases, the acceptance will be at least as
good, and even better. We will confirm these results
experimentally in Section 6.

5 Related work

Test-time alignment. To avoid the high cost of
LLM alignment via parameter fine-tuning, differ-
ent previous work considered to leverage a reward
signal to steer the generation of the base model. Un-
like our approach, these methods require a specif-
ically trained reward model to evaluate partial se-
quences to guide the decoding step from the base
model (Khanov et al., 2024; Deng and Raffel, 2023;
Troshin et al., 2025). Mitchell et al. (2024) and
Liu et al. (2024) proposed extracting the partial
reward from a smaller aligned model, but their
approach requires both the base and aligned check-
points of the smaller model. Alternatively, Faria
and Smith (2025) proposed a Metropolis-Hastings
sampling approach that can use a more standard
reward model defined on complete outputs.

Our test-time alignment method is more straight-
forward as it only requires the aligned small model
and isolates its contribution to the final mixture dis-
tribution to the weak components of p. Addition-
ally, it does not require sampling several responses
for each prediction.

Model cascading. Model cascading is a popular
technique used in computer vision (Wang et al.,
2018) and natural language processing (Varshney
and Baral, 2022; Li et al., 2021), with an emphasis
on reducing generation cost by evaluating larger
models only when necessary. By design, cascading
can only defer to larger models using information
about the the smaller model outputs. For text gen-
eration, Narasimhan et al. (2025) proposed to mix
cascading and speculative decoding to build defer-
ral rules based on larger model outputs while en-
suring fast generation. Our work differ in its goal,
that is proxy-based test-time alignment of a large
base model, which leads to a different definition of
the deferral rule and resulting output distributions.

Knapsack formulation. Nishikawa et al. (2014)
and Tonglet et al. (2023) proposed reductions to
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Figure 2: Empirical acceptance rate per model in specu-
lative generation schema. In brown the dual approxima-
tion w<* with A = 0.4, in blue the primal approxima-
tion with b = 0.9 and in red Nudging with A = 0.4.

the 0-1 knapsack problem for summarization and
in-context examples selection, respectively.

6 Experiment

Datasets. We evaluate our method on three math
reasoning datasets, GSM8K (Cobbe et al., 2021),
MATHS500 (Lightman et al., 2023) and SVAMP
(Patel et al., 2021), and three commonsense reason-
ing datasets, ARC-Challenge (Clark et al., 2018),
CommonsenseQA (Talmor et al., 2019) and Truth-
ful QA (Lin et al., 2022). We use standard prompt-
ing and evaluation strategies for all datasets. Exam-
ples are given in Appendix I.

Models. We use two LLLM famillies for experi-
ments. First, OLMo 2 (OLMo et al., 2025), which
is a fully open source model family. Second, Qwen
3 (Yang et al., 2025), which is relatively closed
source. We select 2 contrasting sizes of each fam-
ily on which we carry out our experiments. The
choice of the model families is based on the avail-
able model sizes and checkpoints.

Unlike Fei et al. (2025), we do not employ
greedy decoding. Instead, we sample from the
unmodified distributions with temperature 0.7 as
recommended for each model to isolate the benefits
of our method.

All the experiments where run on single Nvidia
A100-80GB GPUs. The evaluation of each dataset
was parallelized on 8-GPU nodes.

Test-time methods. For our approach, we eval-
uate both with dual and primal approximations.

For the dual approximation case, we test 3 loss
functions. For the primal approximation case, we
shown that all (non-degenerated) losses lead to the
same deferral rule, therefore will only test with the
negative log-likelihood.

We compare our approach against two baselines:
(1) nudging (Fei et al., 2025), and (2) the implicit re-
ward approach introduced by Mitchell et al. (2024)
and Liu et al. (2024). The implicit reward builds a
mixture in which the probability of token v € V' is
proportional to pu%- Note this approach requires
access to both g* and g, whereas nudging and ours
only require access to g*

Hyperparameters. For our mixture <", we fol-
low Fei et al. (2025) and set A € {0.3,0.4}. We
do not explore further specific tuning for our token-
specific deferral rule, showing that it can serve as a
plug-in replacement for the distribution-level defer-
ral rule with no further hyperparameter search. As
for the other deferral rules, we performed a quick
hyperparameter scan on a small data subset and
selected promising hyperparameter values, that is
b€ {0.6,0.9} and p € {0.05,0.1}.

6.1 Performance evaluation

The main experimental results are summarized in
Table 2. As expected, an aligned model always
performs better than its base model, and a larger
base (resp. aligned) model always performs bet-
ter than its smaller base (resp. aligned) model.
With OLMo 2, g* is nearly always better than
the larger base model p, whereas this only hap-
pens in two out of six datasets for Qwen 3. For a
given model, scores vary widely across datasets,
e.g. from 9.4 (MATHS500) to 57.6 (SVAMP) for the
base OLMo 2. Therefore, it is convenient to focus
on average scores over the six datasets.

All test-time alignment methods in the table con-
sistently reach an average performance above that
of the base p and g and of the small aligned g*
model: in other words, they all play the expected
role. While our dual approximation allows to re-
covers Chow’s rule used in the nudging method
of Fei et al. (2025), our other proposed generaliza-
tions approximations obtain average scores that are
always above that of the nudging method. They
are also always above that of the implicit reward
method except once (primal approximation with
OLMo 2 and b = 0.6 results in lower accuracy than
implicit reward).

Overall, our approach obtains the highest av-



GMS8K MATH SVAMP ARC CSQA TQA Avg. GMSS8K MATH SVAMP ARC CSQA TQA Avg.
OLMo 2 (1B and 13B) Qwen 3 (1.7B and 14B)

Building blocks
p 54.5 09.4 57.6 29.6 194 29.3 33.3 75.5 51.8 80.0 86.6 76.9 578 714
q" 62.5 16.4 70.3 43.8 484 22.3 439 75.3 53.0 86.6 829 68.7 43.2 68.2
Nudging (Fei et al., 2025)
A=0.3 60.3 13.8 67.3 53.7 334 385 445 78.1 52.8 85.0 88.8 785 57.0 73.3
A=04 61.9 18.8 66.6 57.8 46.3 38.5 483 79.5 57.8 87.3 89.6 79.3 60.7 75.7
Our work: dual approximation
— 0-1 loss
nwe(0,1) 68.8 24.6 74.3 58.9 48.7 38.3 522 81.7 59.2 89.6 921 82.0 581 77.1
— perceptron loss
n=0.05 68.2 22.0 74.3 55.8 46.1 37.6 50.6 82.4 59.6 89.6 914 814 60.0 774
nw=0.1 67.7 21.4 73.6 57.3 446 39.2 50.6 82.0 60.0 89.0 921 819 58.6 77.2
= <M with A = £~ (u)
A=0.3 69.5 22.8 76.6 61.6 52.3 42.8 54.2 81.3 59.6 89.0 914 81.3 59.6 77.0
A=04 72.3 23.4 75.3 619 55.6 40.2 54.7 81.7 60.6 87.3 91.5 80.7 58.3 76.6
Our work: primal approximation
b=0.6 65.5 21.0 74.3 549 428 38.1 494 81.6 59.8 87.6 91.3 81.4 583 76.6
b=0.9 68.3 23.8 70.6 59.0 49.2 38.6 515 81.6 60.6 88.6 90.7 81.5 59.7 77.1
For reference
p* 84.3 39.6 87.6 825 76.9 53.6 70.7 82.4 64.0 88.3 93.8 83.1 70.1 80.2
q 14.4 01.0 176 196 15.8 18.8 14.5 21.9 12.2 253 47.1 295 15.0 25.1
Imp. reward  58.4 18.2 73.0 63.3 55.8 30.1 49.8 80.7 60.6 89.0 889 781 552 754

Table 2: Model’s accuracy. Best results on each column are in bold, second best are underlined.

erage accuracy for OLMo 2 and also the highest
average over OLMo 2 and Qwen 3.

For Qwen 3, each primal approximation obtains
at least one average score within the small range
[77.0,77.4]. This plateau effect might be related
to the relatively small distance between p (71.4)
and p* (80.2), where the base model p already per-
forms fairly high, and to the fact that the small
aligned model g* does not outperform the larger
base model p, hence possibly making it more diffi-
cult to provide relevant guidance to it. In contrast,
for OLMo-2, the best average score of each pri-
mal approximation varies within the larger range
[50.6,54.7]. This might be linked to the much
larger gap between p (33.3) and p* (70.7) and to
the fact that the small aligned model g* performs
better than the larger base model p.

Further experimental analysis and motivation are
presented in Appendix J.

6.2 Speed evaluation

Figure 2 shows the empirically calculated accep-
tance rates for ¢ and w<* across different specu-
lative window sizes v € {3,5,7}. We can see in

this figure that 7v<* always achieve higher accep-
tance rates than ¢ across the 3 window sizes, with
our dual approximation achieving slightly higher
acceptance rates than the primal approximation.

This higher acceptance rate for w<* translates
into higher throughput in speculative generation
mode as shown in Table 4 in Appendix K.

7 Conclusion

In this paper, we introduce a novel framework for
test-time alignment based on a 0-1 knapsack prob-
lem. This framework allows to derive several dual
and primal approximations, that all take the form of
a token-specific deferral rules similar to cascading
(Narasimhan et al., 2025). We proposed differ-
ent instances of these deferral rules, generalizing
existing work, and evaluated experimentally their
performance against strong baselines.

Limitations

While our approach cuts training costs by a consid-
erable margin, it draws its guidance from a smaller
less capable model and it slightly underperforms
the larger aligned model p*. Although hyperpa-



rameters choices such as that of the budget b and
the threshold A does not heavily influence the mix-
ture performance, they still need to be tuned indi-
vidually for each model and dataset on a separate
validation set. We however show in this paper that
a fixed hyperparameter choice can safely be car-
ried between models and datasets with marginal
performance degradation.

Acknowledgments

We thank Miguel Couceiro for his comments and
suggestions.

This work is supported by the SEMIAMOR
(CE23-2023-0005) and InExtenso (ANR-23-IAS1-
0004) project grants given by the French National
Research Agency (ANR). This work was granted
access to the HPC resources of IDRIS under the
allocation 2024-AD011015801 made by GENCI.

References

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
and 12 others. 2022. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. CoRR, abs/2204.05862.

Amir Beck. 2017. First-order methods in optimization.
SIAM.

Stephen P Boyd and Lieven Vandenberghe. 2004. Con-
vex optimization. Cambridge university press.

Valentina Cacchiani, Manuel Iori, Alberto Locatelli,
and Silvano Martello. 2022. Knapsack problems
an overview of recent advances. part i: Single knap-
sack problems. Computers & Operations Research,
143:105692.

Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee
Yang, Youngkyung Seo, Du-Seong Chang, and Min-
joon Seo. 2024. How do large language models ac-
quire factual knowledge during pretraining? In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling.  Preprint,
arXiv:2302.01318.

C. Chow. 1970. On optimum recognition error and
reject tradeoff. IEEE Transactions on Information
Theory, 16(1):41-46.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Haikang Deng and Colin Raffel. 2023. Reward-
augmented decoding: Efficient controlled text gener-
ation with a unidirectional reward model. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11781-11791,
Singapore. Association for Computational Linguis-
tics.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Model align-
ment as prospect theoretic optimization. In Proceed-
ings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine
Learning Research, pages 12634-12651. PMLR.

Gongalo Faria and Noah A. Smith. 2025. Sample, don’t
search: Rethinking test-time alignment for language
models. Preprint, arXiv:2504.03790.

Yu Fei, Yasaman Razeghi, and Sameer Singh. 2025.
Nudging: Inference-time alignment of LLMs via
guided decoding. In Proceedings of the 63rd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12702—
12739, Vienna, Austria. Association for Computa-
tional Linguistics.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrit-
tum, Ankit Singh Rawat, Aditya Krishna Menon,
and Sanjiv Kumar. 2024. Language model cascades:
Token-level uncertainty and beyond. In The Twelfth
International Conference on Learning Representa-
tions.

Xuming Hu, Junzhe Chen, Xiaochuan Li, Yufei Guo,
Lijie Wen, Philip S. Yu, and Zhijiang Guo. 2024.
Towards understanding factual knowledge of large
language models. In The Twelfth International Con-
ference on Learning Representations.

Wittawat Jitkrittum, Neha Gupta, Aditya K Menon,
Harikrishna Narasimhan, Ankit Rawat, and Sanjiv
Kumar. 2023. When does confidence-based cascade
deferral suffice? In Advances in Neural Information
Processing Systems, volume 36, pages 9891-9906.
Curran Associates, Inc.

Richard M. Karp. 1972. Reducibility among Combina-
torial Problems, pages 85-103. Springer US, Boston,
MA.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li.
2024. ARGS: Alignment as reward-guided search.


https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.1016/j.cor.2021.105692
https://doi.org/10.1016/j.cor.2021.105692
https://doi.org/10.1016/j.cor.2021.105692
https://openreview.net/forum?id=TYdzj1EvBP
https://openreview.net/forum?id=TYdzj1EvBP
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://doi.org/10.1109/TIT.1970.1054406
https://doi.org/10.1109/TIT.1970.1054406
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://proceedings.mlr.press/v235/ethayarajh24a.html
https://proceedings.mlr.press/v235/ethayarajh24a.html
https://arxiv.org/abs/2504.03790
https://arxiv.org/abs/2504.03790
https://arxiv.org/abs/2504.03790
https://doi.org/10.18653/v1/2025.acl-long.623
https://doi.org/10.18653/v1/2025.acl-long.623
https://openreview.net/forum?id=KgaBScZ4VI
https://openreview.net/forum?id=KgaBScZ4VI
https://openreview.net/forum?id=9OevMUdods
https://openreview.net/forum?id=9OevMUdods
https://proceedings.neurips.cc/paper_files/paper/2023/file/1f09e1ee5035a4c3fe38a5681cae5815-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1f09e1ee5035a4c3fe38a5681cae5815-Paper-Conference.pdf
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://openreview.net/forum?id=shgx0eqdw6

In The Twelfth International Conference on Learning
Representations.

Komal Kumar, Tajamul Ashraf, Omkar Thawakar,
Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip H. S. Torr,
Fahad Shahbaz Khan, and Salman Khan. 2025. LIm
post-training: A deep dive into reasoning large lan-
guage models. Preprint, arXiv:2502.21321.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James Validad Miranda, Alisa Liu, Nouha
Dziri, Xinxi Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le
Bras, Oyvind Tafjord, Christopher Wilhelm, Luca
Soldaini, and 4 others. 2025. Tulu 3: Pushing fron-
tiers in open language model post-training. In Second
Conference on Language Modeling.

Claude Lemaréchal. 2001. Lagrangian relaxation. In
Michael Jiinger and Denis Naddef, editors, Compu-
tational Combinatorial Optimization: Optimal or
Provably Near-Optimal Solutions, pages 112—156.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. Preprint, arXiv:2211.17192.

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li,
Jie Zhou, and Xu Sun. 2021. CascadeBERT: Ac-
celerating inference of pre-trained language models
via calibrated complete models cascade. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 475-486, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023.  Let’s verify step by step.  Preprint,
arXiv:2305.20050.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu,
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan-
dra Bhagavatula, and Yejin Choi. 2024. The unlock-
ing spell on base LLMs: Rethinking alignment via
in-context learning. In The Twelfth International
Conference on Learning Representations.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthful QA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214-3252, Dublin,
Ireland. Association for Computational Linguistics.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia
Tsvetkov, Yejin Choi, and Noah A. Smith. 2024. Tun-
ing language models by proxy. In First Conference
on Language Modeling.

Ximing Lu, Faeze Brahman, Peter West, Jachun Jung,
Khyathi Chandu, Abhilasha Ravichander, Prithviraj

Ammanabrolu, Liwei Jiang, Sahana Ramnath, Nouha
Dziri, Jillian Fisher, Bill Lin, Skyler Hallinan, Lian-
hui Qin, Xiang Ren, Sean Welleck, and Yejin Choi.
2023. Inference-time policy adapters (IPA): Tailoring
extreme-scale LMs without fine-tuning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 6863—-6883,
Singapore. Association for Computational Linguis-
tics.

Silvano Martello, David Pisinger, and Paolo Toth. 1999.
Dynamic programming and strong bounds for the 0-1
knapsack problem. Management Science, 45(3):414—
424.

Silvano Martello and Paolo Toth. 1990. Knapsack prob-
lems: algorithms and computer implementations.
John Wiley & Sons, Inc., USA.

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea
Finn, and Christopher D Manning. 2024. An em-
ulator for fine-tuning large language models using
small language models. In The Twelfth International
Conference on Learning Representations.

Harikrishna Narasimhan,  Wittawat Jitkrittum,
Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
Aditya Krishna Menon, and Sanjiv Kumar. 2025.
Faster cascades via speculative decoding. In The
Thirteenth International Conference on Learning
Representations.

Hitoshi Nishikawa, Kazuho Arita, Katsumi Tanaka, Tsu-
tomu Hirao, Toshiro Makino, and Yoshihiro Matsuo.
2014. Learning to generate coherent summary with
discriminative hidden semi-Markov model. In Pro-
ceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical
Papers, pages 1648—1659, Dublin, Ireland. Dublin
City University and Association for Computational
Linguistics.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, Nathan Lambert,
Dustin Schwenk, Oyvind Tafjord, Taira Anderson,
David Atkinson, Faeze Brahman, Christopher Clark,
Pradeep Dasigi, Nouha Dziri, and 21 others. 2025. 2
OLMo 2 furious. Preprint, arXiv:2501.00656.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the


https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://openreview.net/forum?id=i1uGbfHHpH
https://openreview.net/forum?id=i1uGbfHHpH
https://doi.org/10.1007/3-540-45586-8_4
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://arxiv.org/abs/2305.20050
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://openreview.net/forum?id=dribhnhm1i
https://openreview.net/forum?id=dribhnhm1i
https://doi.org/10.18653/v1/2023.emnlp-main.424
https://doi.org/10.18653/v1/2023.emnlp-main.424
http://www.jstor.org/stable/2634886
http://www.jstor.org/stable/2634886
https://openreview.net/forum?id=Eo7kv0sllr
https://openreview.net/forum?id=Eo7kv0sllr
https://openreview.net/forum?id=Eo7kv0sllr
https://openreview.net/forum?id=vo9t20wsmd
https://aclanthology.org/C14-1156/
https://aclanthology.org/C14-1156/
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168

Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

David Pisinger. 1997. A minimal algorithm for the 0-1
knapsack problem. Operations Research, 45(5):758—
767.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

R. Renner and S. Wolf. 2004. Smooth renyi entropy and
applications. In International Symposium oninforma-
tion Theory, 2004. ISIT 2004. Proceedings., pages
233-.

Shai Shalev-Shwartz and Shai Ben-David. 2014. Un-
derstanding machine learning: From theory to algo-
rithms. Cambridge university press.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41494158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jonathan Tonglet, Manon Reusens, Philipp Borchert,
and Bart Baesens. 2023. SEER : A knapsack ap-
proach to exemplar selection for in-context Hy-
bridQA. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 13569-13583, Singapore. Association for
Computational Linguistics.

Sergey Troshin, Vlad Niculae, and Antske Fokkens.
2025. On the low-rank parametrization of reward
models for controlled language generation. Transac-
tions on Machine Learning Research.

Neeraj Varshney and Chitta Baral. 2022. Model cas-
cading: Towards jointly improving efficiency and
accuracy of NLP systems. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 11007-11021, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tu-
manov, Fisher Yu, and Joseph E. Gonzalez. 2018.
Idk cascades: Fast deep learning by learning not to
overthink. Preprint, arXiv:1706.00885.

Sean Welleck, Amanda Bertsch, Matthew Finlayson,
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. 2024. From decoding
to meta-generation: Inference-time algorithms for
large language models. Transactions on Machine
Learning Research. Survey Certification.

11

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Day-
iheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao
Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41
others. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 55006—
55021. Curran Associates, Inc.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2020. Fine-tuning lan-
guage models from human preferences. Preprint,
arXiv:1909.08593.


http://www.jstor.org/stable/172128
http://www.jstor.org/stable/172128
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://doi.org/10.1109/ISIT.2004.1365269
https://doi.org/10.1109/ISIT.2004.1365269
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/2023.emnlp-main.837
https://doi.org/10.18653/v1/2023.emnlp-main.837
https://doi.org/10.18653/v1/2023.emnlp-main.837
https://openreview.net/forum?id=cjRsEGLT8B
https://openreview.net/forum?id=cjRsEGLT8B
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://arxiv.org/abs/1706.00885
https://arxiv.org/abs/1706.00885
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=eskQMcIbMS
https://arxiv.org/abs/2505.09388
https://proceedings.neurips.cc/paper_files/paper/2023/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593

A  Proof of Lemma 2

Proof. The Lagrangian can be rewritten as follows:

ZP@-—b)

eV
=Y " d,Py(— L(p,v))
veV
+ Z Pvg(pu U) - Mb,
veV

where only the first sum depends on d. Therefore,
computing the dual approximation can be rewritten
as:

d~(p) € argmin Z
dE{O,l}‘V‘ veEV

dyPy(p — £(p,v)),

where, for allv € V, P, > 0 and ¢(p,v) > 0 by
definition. Therefore, to minimize the sum in the
objective, we must set d, = 1 if u — £(p,v) < 0,
and O otherwise. As such, we can write:

[3_(/1)}” = [¢(p,v) > ]

—
tzi\*(u) € argmin L(d, p).
de{0,1}1V]

Note that if we use the condition:

= [t(p,v) > p],

although it does not change the objective value, it
increases the probability of violating the budget
constraint.

The bound on the true risk follows standard lin-
ear optimization properties (Lemaréchal, 2001).
As d satisfy the budget constraint, we have
Zve[V] ]P)UC/Z\U — b <0, therefore:

We derive a lower bound on this term by minimiz-
ing on the deferral decision, which leads to the
desired bound:

ZPUEU—b

veV

r@w@w(

> min
de{0,1}VI

-~

= L(d" (1), p).

L(d, 1)

O]
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B Deferral Rules for Dual Approximation

The deferral rule for dual approximation has the
following form:

[3‘(u)]v = [¢(p,v) > p].

We derive the particular form of this rule for the
losses that are summarized in Table 1.

Negative log-likelihood (logistic). Let ¢ be de-

fined as:
f(p, ’U) = - 108;2%-

Then we can rewrite the deferral condition as:

U(p,v) > p,
—logpy > p,
Do < exp(—p),

which shows in this case the rule defer to g* for
low probability tokens.

Squared. Let ¢ be defined as:

U(p,v) = (1 —py)?

Then we can rewrite the deferral condition as:

U(p,v) > p,
(1_pv)2 > Hy
L —py > /i,
P < 1—+/1

which shows in this case the rule defer to g* for
low probability tokens.

Note the similarity with the condition of the lo-
gistic loss. Given p, ¢’ € R, and the two condi-
tions:

Py < exp(—p) (5)
and p, <1— /. (6)
If the following condition holds:
p=—1log (1= /i), 0
or equivalently:
p' = (1 —exp(—p))?, (®)

then the two deferral rules are equivalent.



Perceptron. Let ¢ be defined as:
14 =—
(p,v) = —py +maxpy

Then we can rewrite the deferral condition as:

U(p,v) > p,
—py + max py, > u,
weV

Py < MaxX Py — L,
weV

which shows in this case the rule defer to g* for
tokens whose probability is lower than the max
token probability minus a margin given by the dual
variable p.

Let ¢ be defined as:

{(p,v) =

Zero-one.
[v ¢ arg maxp, ]
weV

and since p € (0,1) and ¢(p,v) € {0,1},
[J—(M)} — 1if and only if £(p,v) = 1 which
is the ca;)e when v ¢ argmax,,cy py Or equiva-
lently when p,, < maxyev Puw.

C Proof of Lemma 3

Proof. First, note that L is a concave function
since it is a pointwise minimum over a family of
affine functions (Boyd and Vandenberghe, 2004,
Sec. 3.2.3):

Liy) = Pyé(p, v)(1 — d
(1) deg)n&wz (p.v )
+M<Z]P’Udv—b>.
veV

Per Lemma 2, for a given dual variable y € R>,
the optimal minimizer is given by d~(u) defined

as: R
4] = 1e.0) > 4l

We observe that the value of L changes at break-
points given by ¢(p,v), Vv € V. The subdiffer-
ential set at © € R, is given by (Beck, 2017,
Thm. 3.50):

OL(n)

> P,

vil(pw)>p

ZIP’—b,

vil(p,v)>p

which is the convex hull of derivatives of functions
attaining the minimum.
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A sufficient condition for i € R>( to maximize
Listhat 0 € OL(jz). Assuming that the vocabulary
is sorted in increasing loss order and knowing that
% is defined as per condition (4), we have

\4 \4
va—b>o and Z]P,U—bgo.
% ’U:E+1

Thus, o = ¢(p, /k\:)

D Primal Approximation with the 0-1
Loss

Let /(p, v) be the 0-1 loss function, that is:

{(p,v) = [v ¢ argmax py].

weV

As the optimal Lagrangian multiplier has the form:

{(p, k),

p= ©)

where k is the critical index element, therefore we
know that 1 € {0, 1}.
If & = 1, then we have:

[dﬂv = [¢(p,v) > 1] = 0,

as, by definition, the 0-1 loss cannot be strictly
greater than 1. In other word, we defer all the
decision to p.

If o = 0, then we have:

], -

that is, we keep from p only the mass of the most
probable element.

We are left with finding when we have 1 = 0.
By Eq. equation 9 and the definition of the 0-1 loss,
this can only happen if E~: 1. Remember that
the critical index element £ is defined such that it
satisfies the following conditions:

[¢(p,v) > 0] = [v ¢ arg max p,],
weV

V] 14
Z P <b< Z Dv-
v=k+1

Hence, to have k= 1, we must have p; > 1 —b.
We end up with the rule:

4],

=[p1 > 1—bAv ¢ argmaxp,].
w



E Proof of Lemma 4

Proof. We give the proof for the primal feasible
solution &\Jr, and a similar reasoning holds for the
approximate solution d .

According to the hypothesis on ¢; and {5, sort-
ing tokens in the increasing order of ¢1(p,v) or
l5(p,v) result in the same ordering. Therefore,
they both lead to the same critical element index k,
which depends only on P and the ordering (and not
the particular loss values).

Thus, the optimal Lagrangian multipliers given
by the two losses are 1i; = {1(p, E) and [y =
l5(p, k). Since the losses have the same order, it is
easy to see that for any v € V, we have

[£1(p,v) > ] = [€2(p, v) > Fiz],

and therefore both losses produces the same primal
feasible solution d*. O

F Proof of Lemma 5

Proof. Let us consider the quantity
[r(d") = r(d")]

Assuming that vocabulary is sorted in increasing
loss order, we can see that
r(d*) —r(d")]
=[r(d™ () —r(d”(n))|
< > Pullp,) |ld (@) — [d (),

Since d~ (1) and d (i ) agree on all positions ex-
cept {min(k, k) + 1, ..., max(k, k)}

ax(k,k)
Z P,l(p,v).

vmln%)l

I

Let us define | = min(%, k) 4+ 1 and u
max(k, k), remember that the vocabulary is sorted
in increasing loss order:

u) i Py.
v=l
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Let us consider the second factor in the left side of
the inequality

\% IVI
=3 )+ Do
v=1
. 1 |V|
+ 5 ZP’U - 5 Z Py
o=l v=1:v¢[u,l]
S DTV(Pap)
1 . vi
+ 5 1 + ZPU - Z Pv
— v:l:vf{uw'l}

u
- DTV(]P)vp) + ZPU)

v=l

where Drv is the total-variation distance. Going
back to our initial bound

As for the second part of the Lemma, we have

r(dh) —r(dh)| <

E(p7 u) (DTV(IP7P) + ZP’U

v=l

L(fi) = L(d", 7i)
_ @) +7 (Z Pt b)
eV
< r(d).

From the last inequality, we have

r(dt) —r( (b > P d+>
eV
< U(p, k)P;.
: VI m. _ ¥V . 5
Since b < Zi:ER = b Zi:EH P; < P;.



G Primal Approximation Algorithm

Algorithm 1 shows a simple sorting-based proce-
dure for calculating the primal approximation de-
ferral rule.

H Proof of lemma 6

Proof. For the first part of the lemma, notice that
if max, ppy < AthenVv € V,p, < Aandd =1
giving ¢ = w<* = g* (trivial case). On the other
hand, if max,, p,, > A then ¢ = p and we have:

,Z 1-d

Dlpi + g — g}

< di)lpi — 4|

201~
+ %a Z(l

N =

1 * 1 *
<5 =gl =5 D dilpi — ]
7 )
11 .
+§a—§a2diqi
3

*DTVp; _*Zd‘pz_
(2
Using this result we derive
1 k *
= §Zdi\qz‘ — 4
i

di)|pi + ¢ — qj|

DTV(ﬂ-<>\7 q

(-
. 1
< Drv(p,q") - §Zdi|2%'—qz‘|
7

1 1
+ Sl §a2diqf
7
1 * 1 *

- 7Zd |pz_
+§a—azdiq§k+§zdiq§k

- DTV Db,q
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Zd\pz a1
—azdiq;+§zdi|pi+Qf|
% A

DTV p,q

— az q'd; + Zdipi + Drv(p,q")

1_2% )a

which shows that Dpy (7

> 4;di) + Drv (9, q).
For the second part of the lemma, remember

DTV(p7 ) - I_vain(pmq:)'
We have Dry(m<*,q*) < Drv(p,q*) is
equivalent to

> min(m;?,¢7) = Y min(py, q;)
v v

which is equivalent to

+ DTV D,q

<)\7q*) Oé(l -

> (min(p, + agj, ¢;) — min(py, ;) )
veA

+ (g, —min(p,,q;) ) >
veB
where A={veV:p,>Atand B={veV:
Py < A}. Suppose that the conditions of the lemma
hold, then:

0, (10)

» Forv € A, if min(py, ¢;;) = ¢ then min(p,+
aqy,q;) = ¢;. Otherwise if min(p,, ¢;) =
py then min(p, + aq},q;) > p,. Hence
min(p, + ag}, ¢}) — min(p,, ¢) > 0.

» Forv € B : p, < aq implies min(p,, ¢}) =
py and min(my, ¢5) = min(aqy, ¢;) = aqgy.
Thus

aq, —min(py, ¢;) = ag, —pv > 0.

Summing the nonnegative coordinate differences
over A and B gives the left hand side of (10) is > 0.
Hence Dy (<, ¢*) < D1v(p, ¢*). dJ

I Dataset Examples

Following previous work, we rely on regular ex-
pressions to extract the final response form the
LLM generation. In the case of GSM8K and
SVAMP, we extract the last number in the model’s
response. In the case of MATHS500, we extract the



Algorithm 1: Returns the deferral rule using primal approximation.

Data: Budget b € [0, 1], distribution p.
Result: Deferral rule d € {0,1}V.
begin

v < —plogp

w<—p
¢ < v/w which is equal to — log p

s < argsort_descending(c)

d<0

b0

141

while i <V and b’ + ws; < bdo
ds;, + 1
b b + ws,

end

return d

end

/* Values, p is a plug-in estimator for P x/

/* Weights, p is a plug-in estimator for P =%/

/* Densities *x/

last \boxed{ } number in the model’s response. In
the multiple-choice question tasks, we extract the
last capital letter from A to J in the response.

The models are evaluated on the question
prompts alone, with no additional few-shot exam-
ples. For each task, we use the extracted answer’s
accuracy to evaluate the model’s performance. We
also evaluate the generation throughput as the aver-
age number of tokens generated by the model each

second.
The following system prompt was used in all
tasks:

Answer the question by walking through
the reasoning step by step.

MATHS00. Here is an example of a question/an-
swer from MATHS00 dataset:

{

"role": "user”,
"content”: "Convert the point $(0,3)$ in
rectangular coordinates to polar coordinates.
Enter your answer in the form $(r,\\theta),$
where $r > 0$ and $0 \\le \\theta < 2 \\pi.$
\n\nPresent the answer in LaTex format:
\\boxed{Your answer}"

}!

{
"role"”: "assistant”,
"content”: "We have that $r = \\sqrt{0"2
+ 372} = 3.% Also, if we draw the line
connecting the origin and $(0,3),$%$ this line
makes an angle of $\\frac{\\pi}{2}$ with the
positive $x$-axis.\n\n[asy]\nunitsize(0.8 cm);
\n\ndraw((-0.5,0)--(3.5,0));\ndraw((0,-0.5)
--(0,3.5)); \ndraw(arc((0,0),3,0,90),red,
Arrow(6));\n\ndot((0,3), red);\nlabel(\"$(0,3)$
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\", (0,3), W;\ndot((3,0), red); \n[/asy]

\n\nTherefore, the polar coordinates are

$\\boxed{\\1left( 3, \\frac{\\pi}{2} \\right)}.$"
3

The following instruction is appended at the end
of the user’s query :

\n\nPresent the answer in LaTex format:
\\boxed{{Your answer}?}

GSMS8K. Here is an example of a question/an-
swer from GSMS8K dataset:

{
"role": "user",
"content”: "Janet\u2019s ducks lay 16 eggs per day.
She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She
sells the remainder at the farmers' market daily
for $2 per fresh duck egg. How much in dollars does
she make every day at the farmers' market?”

}7

{

"role": "assistant”,
"content”: "How many eggs does Janet sell? *x Janet
sells 16 - 3 - 4 = <<16-3-4=9>>9 duck eggs a day.
\nHow much does Janet make at the farmers' market?
** She makes 9 * 2 = $<<9x2=18>>18 every day at the
farmer\u2019s market.
\n###H#t 18"

3

ARC. Here is an example of a question/answer
from ARC dataset:

{

"role”: "user”,

"content”: "Choose the correct answer to the
following multiple-choice question.
\n\nQuestion: An astronomer observes that a
planet rotates faster after a meteorite impact.
Which is the most likely effect of this increase



in rotation?\n\nA). Planetary density will
decrease.\nB). Planetary years will become longer.
\nC). Planetary days will become shorter.

\nD). Planetary gravity will become stronger.
\n\nProvide your reasoning about the answer and
finish your answer with the letter corresponding
to the correct option (e.g., A, B, C, or D).\n\n"

}!
{
"role”: "assistant”,
"content”: "\nAnswer: C\n\n"
}

The following prefix is prepended to the user’s
query

Choose the correct answer to the following
multiple-choice question.\n\n

The following suffix is appended to the user’s
query

\nProvide your reasoning about the answer and finish
your answer with the letter corresponding to the
correct option (e.g., A, B, C, or D).\n\n

J Further Analysis

Conditional distribution entropy. The Shannon
entropy is defined as follows:

Hp] = =) pylogp,.
veV

Entropy is a measure of uncertainty, i.e. high en-
tropy means high uncertainty. In the following
we consider entropies of conditional distributions,
where we condition the distribution on sampling el-
ement that are deferred in 7w <*, for different values
of A, which we write as follows:

[(p,d)"'pod],
:p<Xt: XtG{U€V|dU:1},>’

X1:it—-1 = T1:t—1
where © is the element-wise multiplication, (-, -)
is the dot product. We define a similar conditional
distribution for p*.
When the following inequality holds:

H[(p,d)"'pod] > H [(p*,d)"'p* @ d],

the low probability elements of p has a higher un-
certainty than the same elements of p*. To check
if this is true empirically, we plot on Figure 3 the
difference of entropy between the conditional dis-
tributions based on p and p*, for different values
of A. We can see the the entropy of the conditional
distribution based on p is much higher than that of
its aligned version p*. This motivates the need to
mask those parts of p and replace them with g*.

Entropy difference

Figure 3: Entropy different H [(p.d)"'p©d] —
H [(p*, d)~"'p*® d} for different values of \. We re-
port mean differences evaluated on OLMo-2 1B and
13B on MATHS500.

l—d |y, =0 =1 =2 =3
9.5% 88.6% 1.9% 0%
1-dfyglls =0 =1 =2 =3
0.0% 99.9% 0.1% 0%

1 -dj_gelh =0 =1 =2 =3

0.0% 90.7% 6.3% 1.5%

Table 3: Proportions of the number of selected token-
probabilities from p using a threshold of A = 0.4 for
d-anda budget of b € {0.6,0.9} for d*. Evaluated
on OLMo-2 1B and 13b on MATHS500.

p-selection proportion. Table 3 shows the pro-
portions of tokens whose mass from p is kept in
the mixture, i.e. the number of non-deferred tokens.
We show statistics for 7<* with A\ = 0.4, and for
primal approximation with a budget of {0.6,0.9}.
We can see that those rules select probabilities from
p according to their contribution, measured either
with a threshold or a budget, and this contribution
can be split over 1 or more tokens. For example,
decreasing the budget b of the primal approxima-
tion will spread the contribution of p across more
than one token.

Budget selection. Setting a high budget does not
mean that it will necessarily be fully met, as the re-
maining unfilled budget depends on the size of the
critical element, i.e. the larger the critical element
is, the smaller the actually filled budget can be. An
example is shown in Figure 4.



GMS8K MATH SVAMP ARC CSQA TQA Avg. GMS8K MATH SVAMP ARC CSQA TQA Avg.
OLMo 2 (1B and 13B) Qwen 3 (1.7B and 14B)
Building blocks
p-AR 26.6 26.4 26.3 27.1 271 26.9 26.7 26.8 26.5 26.1 264 26.6 26.5 26.4
q" - AR 65.8 65.7 649 66.5 66.5 659 65.8 39.4 39.0 39.1 394 388 39.0 39.1
Nudging (Fei et al., 2025)
A=04-AR 26.6 26.8 26.7 26.0 245 255 26.0 26.2 26.1 26.2  26.1 259 26.1 26.0
A=04,v=3 272 27.1 26.8 25.6 25.3 25.7 26.2 21.5 21.1 215  19.7 18.8 194 20.3
A=04,v=5 291 28.6 28.5 254 248 26.2 27.0 22.7 22.4 223 19.2 18.0 18.8 20.5
A=04,7v=7 285 27.6 269 239 228 23.8 255 22.0 21.5 215 174 159 17.0 19.2
Our work: dual approximation
— <M with A\ = £ (u)
A=04-AR 19.4 19.3 194 196 193 19.5 194 16.1 16.0 16.0 16.1 16.1 159 16.0
A=04,v=3 288 28.6 28.0 277 282 27.8 28.1 22.1 22.0 222 206 19.8 20.2 21.1
A=04,v=5 319 31.2 30.2 289 303 293 30.3 23.6 23.0 23.2 202 19.6 203 21.6
A=04,v=T7 317 31.6 30.3 274 27.7 284 295 23.1 22.6 229 191 178 18.8 20.7
Our work: primal approximation
b=0.9-AR 19.3 19.1 194 193 19.2 194 19.2 15.8 16.0 15.8 159 159 16.1 159
b=0.9,y=3 28.7 28.1 28.1 269 26.8 26.8 27.5 22.0 21.7 222 200 19.8 20.0 21.9
b=09,y=5 30.6 30.3 298 27.8 255 26.6 284 23.5 229 23.1 202 191 199 214
b=09,y=7 30.1 29.8 28.7 246 216 224 26.2 23.4 22.4 225 182 174 18.2 20.3
Table 4: Model’s throughput in tokens per second. “AR” stands for auto-regressive, other lines correspond to
speculative decoding with a draft size of . Best results on each column are in bold, second best are underlined.
GMSS8K MATH SVAMP ARC CSQA TQA Avg. GMSS8K MATH SVAMP ARC CSQA TQA Avg.
OLMo 2 (1B and 13B) Qwen 3 (1.7B and 14B)
Nudging (Fei et al., 2025)
A=04,y=3 676 69.2 65.9 59.0 56.5 59.3 62.9 78.4 78.1 75.3 65.0 59.5 64.0 70.0
A=04,7v=5 565 57.5 53.3  46.7 44.0 48.2 51.0 69.5 69.0 65.9 53.2 475 52.2 59.5
A=04,v=T7 480 48.6 43.1 386 36.6 38.5 422 61.7 60.9 59.2 444 38.6 43.6 514
Our work: dual approximation
<M with A = £ (p)
A=04,y=3 737 75.6 714 67.7 693 688 71.0 81.6 81.3 79.8 699 66.2 70.2 748
A=04,v=5 64.0 65.9 59.3 55.5 60.0 57.3 60.3 73.9 72.5 71.6 59.1 54.7 59.5 65.2
A=04,y=7 554 57.9 52.3 47.6 48.3 49.8 51.8 67.0 65.3 64.0 50.1 46.0 50.3 57.1
Our work: primal approximation
b=09,vy=3 1735 74.6 68.8 65.5 64.9 64.4 68.6 81.7 80.9 79.8 69.8 66.0 69.4 74.6
b=09,7v=5 620 63.1 572  53.0 46.7 49.9 55.3 74.0 72.2 71.3 581 53.1 57.6 64.3
b=09,y=7 53.5 54.5 48.0 412 33.8 36.4 445 66.8 64.3 64.2 485 44.1 48.1 56.0

Table 5: Speculative generation empirical acceptance rate. Best results on each column are in bold, second best are

underlined.

K Generation Speed Results

Table 4 shows the throughput for all the tested mod-
els, both for autoregressive generation and specula-
tive decoding. Table 5 shows the exact acceptance
rates.
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Small critical item Critical
| 7%
Filled budget Unfilled gap
Large critical item Critical
| A0
Filled budget Uil e

Figure 4: Illustration of the effect of the critical element
size on the filled budget; a bigger critical element can
leave a bigger unfilled gap.
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