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1 Introduction

Computing the probability of an observation requires to marginalize out latent (i.e. non observed) vari-
ables (if any). For, many models, this marginalization is too expensive to be computed exactly. There
exists two standard approximation methods: stochastic approximations and variational approxima-
tions. These notes present variational approximation techniques for two layers sigmoid belief networks
that were introduced in [Saul et al., 1996] and [Jaakkola and Jordan, 1996].

The main idea is as follows. Assume a joint probability distribution p(X ,Y) where X and Y are the
observed and latent random variables, respectively. We wish to estimate the evidence (log-probability)
of an observation x:

log(X = x) = logEp(Y)[p(X = x|Y)]

This quantity can be useful if we want to estimate the probability that a given point comes from
the distribution or to learn the parameters of the distribution by maximizing the log-likelihood of a
dataset. In many cases, the expectation (i.e. the marginalization) leads to an intractable evidence.
Therefore, we may want to approximate it using parameterized functions:

log(X = x) ≥ f(x, ϕ)

or log(X = x) ≤ h(x, ϵ),

where we assume that computing f(x, ϕ) and h(x, ϵ) is easy. The parameters ϕ and ϵ are variational
parameters that control the quality of the bounds, i.e. we assume that these bounds are true for any
ϕ and ϵ. That is, we replaced an intractable expectation with an easy to compute parameterized
function. Note that, unfortunately, finding the best possible variational parameters can be a difficult
problem.

2 Two layers sigmoid belief networks (SBN)

Let X be the observed random variable, taking values in [0, 1]d, and Y the latent random variable, tak-
ing values in [0, 1]k. A two layers sigmoid belief networks (SBN) defines a joint probability distribution
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on X and Y as follows:

pθ(x,y) = pθ(y)pθ(x|y)

=

k∏
i=1

pθ(yi)

d∏
i=1

pθ(xi|y)

=

k∏
i=1

exp(yiai)

1 + exp(ai)

d∏
i=1

exp(xi(Biy + ci)

1 + exp(Biy + ci)

where θ = {a,B, c} are the parameters of the model with a ∈ Rk, B ∈ Rd×k and c ∈ Rd. In this
model, the evidence is intractable as it requires to sum of 2k possible assignments for the latent variable
Y.

Generating data from a trained model is easy via ancestral sampling: first sample from the latent
variable distribution (independent Bernoullis) and then sample from the conditional distribution of
observed variables (independent Bernoullis again). The generative story can be described as follows:

1. y ∼ pθ(Y)

2. x ∼ pθ(X|Y = y)

2.1 Lower bound on the evidence

In this section, we derive a lower bound on the evidence based on the introduction of a proposal
distribution and Jensen’s inequality. The resulting lower bound is not equivalent to the “standard”
ELBO, as one of the term of the ELBO is intractable for SBNs. Contrary to Gaussian Mixture Models,
the posterior distribution cannot be computed exactly (as it requires summing over 2k terms in the
denominator of the Bayes rule). Therefore, we cannot just introduce a proposal distribution that is
made equal to the true posterior as in the Expectation step of EM for GMM. Instead, we introduce a
proposal distribution that factorizes across latent variable, i.e. each latent variable is independent wrt
to other latent variable. In other words, the proposal distribution is defined as follows:

qϕ(z|x) =
k∏

i=1

(ϕ
(x)
i )zi(1− ϕ(x))1−zi

i

where ϕ(x) ∈ [0, 1]k are the parameters of the proposal distribution associated with observation x. We
can observe that they are independent Bernoullis. This technique of simplifying the distribution of the
proposal is called Mean Field Theory in statistical physics.

The bound we present here is a simplified version of the one proposed by [Saul et al., 1996]. We
first derive the evidence lower bound via Jensen’s inequality:

log pθ(x) = log
∑
y∈Y

pθ(y)pθ(x|y)

≥ Eqϕ(Y|x)[log pθ(Y)]︸ ︷︷ ︸
(a)

+Eqϕ(Y|x)[log pθ(x|Y)]︸ ︷︷ ︸
(b)

+HS[qϕ(Y|x)]︸ ︷︷ ︸
(c)

where HS is the Shannon entropy. Although this equation doesn’t seem simpler (we still need to sum
over 2k values in the tree expectations), we show in the following that the mean field assumption on
q allows to compute these expectations efficiently (except (b) which requires to derive another bound
on this term).
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Term (a) can be rewritten as:

Eqϕ(Y|x)[log pθ(Y)] = Eqϕ(Y|x)

[
log

k∏
i=1

exp(Yiai)

1 + exp(ai)

]

= Eqϕ(Y|x)

[
k∑

i=1

(
Yiai − log(1 + exp(ai)

)]

Note that by linearity of the expectation, we can separate the two part of the substraction. Moreover,
the term log(1 + exp(ai)) does not depends on Y , therefore:

=

k∑
i=1

Eqϕ(Y|x) [Yiai]−
k∑

i=1

log(1 + exp(ai))

=

k∑
i=1

aiϕ
(x)
i −

k∑
i=1

log(1 + exp(ai))

= ⟨a,ϕ(x)⟩ −
k∑

i=1

log(1 + exp(ai))

which is easy to compute, we don’t need to sum over 2k terms in this form.
Term (b) can be rewritten as:

Eqϕ(Y|x)[log pθ(x|Y)] = Eqϕ(Y|x)

[
log

d∏
i=1

exp(xi(BiY + ci)

1 + exp(BiY + ci)

]

= Eqϕ(Y|x)

[
d∑

i=1

(
xi(BiY + ci)− log(1 + exp(BiY + ci))

)]

=

d∑
i=1

Eqϕ(Y|x)
[(
xi(BiY + ci)

)]
−

d∑
i=1

Eqϕ(Y|x) [log(1 + exp(BiY + ci))]

As for term (a), the first argument of the substraction can be simplified. However, the second argument
cannot be simplified directly and requires to sum over 2k values. We derive a lower bound on this
term using Jensen’s inequality again (therefore, we actually compute a lower bound to the standard
ELBO):

≥
d∑

i=1

xiEqϕ(Y|x)

 k∑
j=1

Bi,kYk

+

d∑
i=1

xici

−
d∑

i=1

log

Eqϕ(Y|x)

1 + exp(ci)

k∏
j=1

exp(Bi,jYj)


= ⟨x,Bϕ(x)⟩+ ⟨x, c⟩ −

d∑
i=1

log

1 + exp(ci)

k∏
j=1

(
1− ϕ

(x)
j + ϕ

(x)
j exp(Bi,j)

) ,

which is easy to compute.
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Lastly, the entropy term (c) can be rewritten as:

HS[qϕ(Y|x)] = Eqϕ(Y|x)[log qϕ(Y|x)]

= Eqϕ(Y|x)

[
log

(
k∏

i=1

qϕ(Yi|x)

)]

=

k∑
i=1

Eqϕ(Y|x) [log qϕ(Yi|x)]

Note that the value inside the expectation depends only on a single random variable element Yi,
therefore it simplifies to:

=

k∑
i=1

Eqϕ(Yi|x) [log qϕ(Yi|x)]

=

k∑
i=1

(
ϕ
(x)
i log ϕ

(x)
i + (1− ϕ

(x)
i ) log(1− ϕ

(x)
i )

)
which is tractable.

3 Upper bound on the evidence

We now show how to derive an upper bound on the evidence. Although it is not a good idea to rely
on this upper bound for training a SBN (i.e. at training time we want to maximize a lower bound,
hopping that maximizing a lower bound will also push up the actual evidence of the training data), it
can be useful for example to estimate the quality of the lower bound derived in the previous section
by computing the gap between the two bounds.

The method described in this section is a simplification of the approach proposed in [Jaakkola and Jordan, 1996].
The probability of an observation is defined as:

pθ(x) =
∑
y∈Y

pθ(y)pθ(x|y)

As 1− σ(u) = σ(−u), we can write:

=
∑
y∈Y

pθ(y)

d∏
i=1

σ((2xi − 1)(Biy + ci))

We can replace the sigmoid by its variational formulation, i.e. σ(u) = infϵ∈[0,1] exp(ϵu−HFD[ϵ]) where
HFD[ϵ] = −ϵ log ϵ − (1 − ϵ) log(1 − ϵ) if the Fermi-Dirac entropy. Note that we need one variational
parameter ϵi per observed variable dimension. We obtain:

=
∑
y∈Y

pθ(y)

d∏
i=1

inf
ϵi∈[0,1]

exp(ϵi(2xi − 1)(Biy + ci)−HFD[ϵ1])
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The objectives in infinimizations are strictly positive, therefore we can take out the infinimizations
from the product:

=
∑
y∈Y

pθ(y) inf
ϵi∈[0,1],

∀i∈{1...d}

d∏
i=1

exp(ϵi(2xi − 1)(Biy + ci)−HFD[ϵ1])

=
∑
y∈Y

pθ(y) inf
ϵi∈[0,1],

∀i∈{1...d}

exp(−
d∑

i=1

HFD[ϵ1]) exp(

d∑
i=1

ϵi(2xi − 1)(Biy + ci))

=
∑
y∈Y

pθ(y) inf
ϵi∈[0,1],

∀i∈{1...d}

exp(−
d∑

i=1

HFD[ϵ1]) exp(

d∑
i=1

ϵici(2xi − 1))

k∏
j=1

exp(

d∑
i=1

ϵiBi,j(2xi − 1))yj

Note that the outside sum is an expectation:

= Epθ(Y)

 inf
ϵi∈[0,1],

∀i∈{1...d}

exp(−
d∑

i=1

HFD[ϵ1]) exp(

d∑
i=1

ϵici(2xi − 1))

k∏
j=1

exp(

d∑
i=1

ϵiBi,j(2xi − 1))yj


We obtain an upper bound by moving the expectation inside the infinimizations. To understand
why this gives us an upper bound, instead of finding the optimal variational parameters for each
latent variable assignments y, now the assignment is shared across all possible y ∈ Y . As it is an
infinimization, which is then “less expressive”, we obtain an upperound.

≤ inf
ϵi∈[0,1],

∀i∈{1...d}

exp(−
d∑

i=1

HFD[ϵ1]) exp(

d∑
i=1

ϵici(2xi − 1))

k∏
j=1

Epθ(Yi|x)

[
exp(

d∑
i=1

ϵiBi,j(2xi − 1))yj

]

= inf
ϵi∈[0,1],

∀i∈{1...d}

exp(−
d∑

i=1

HFD[ϵ1]) exp(

d∑
i=1

ϵici(2xi − 1))

k∏
j=1

(
1− σ(ai) + σ(ai) exp(

d∑
i=1

ϵiBi,j(2xi − 1))

)

Computing the objective in the infinimizations in the last expression are all tractable. Therefore, we
have the following upper bound on the evidence:

log pθ(x) ≤

−
d∑

i=1

HFD[ϵ1] +

d∑
i=1

ϵici(2xi − 1) +

k∑
j=1

(
1− σ(ai) + σ(ai) exp(

d∑
i=1

ϵiBi,j(2xi − 1))

)
where ϵ ∈ [0, 1]d are the variational parameters of the bound. Although this bound is easy to compute,
this does not mean that computing the parameters ϵ that leads to the tightness bound possible is easy.
Methods to compute the variational parameters are described in [Jaakkola and Jordan, 1996].

4 Expectation-Maximization algorithm

In this section, we show how the variational lower bound can be used to learn the parameters θ of a
sigmoid belief network. The Expectation-Maximization algorithm is a learning algorithm the relies on
block-coordinate ascent to optimize the evidence lower bound (ELBO). Given a dataset D = {x(i)}ni=1,
the log-likelihood of the dataset and its ELBO are defined as follows:

max
θ∈Θ

∑
x∈D

log pθ(x) ≥ max
θ∈Θ,ϕ∈Φ

∑
x∈D

Elbo(x, θ,ϕ)

The two step of the EM algorithms are:
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1. Expectation step: maximize over variational parameters ϕ;

2. Maximization step: maximize over model parameters θ.

The iterative optimization process simply interleaves between E and M steps. In the case of GMMs,
both steps enjoy simple closed-form expression. This is not the case of SBNs. We show below how the
E step for SBN can be approximated efficiently. For the M step, one can simply rely on a single step
of gradient ascent.

To simplify notation, for each training point x ∈ D we introduce vector w(x) ∈ Rd and matrix
U (x) ∈ Rd,k defined as follows:

w
(x)
j = exp(cj)

k∏
l=1

(1− ϕ
(x)
l + ϕ

(x)
l exp(Bj,l))

U
(x)
j,l =

∂

∂ϕ
(x)
l

log(1 + w
(x)
j ) =

w
(x)
j

1 + w
(x)
j

× exp(Bj,l)− 1

1− ϕ
(x)
l + ϕ

(x)
l exp(Bj,l)

The objective of the E step is defined as follows:

max
ϕ∈Φ

∑
x∈D

Elbo(x, θ,ϕ) = max
ϕ(x)∈[0,1]k,
i∈{1...n}

∑
x∈D


⟨a,ϕ(x) −

∑k
j=1 log(1 + exp(aj))

+⟨x,Bϕ(x)⟩+ ⟨x, c⟩ −
∑d

j=1 log
(
1 + w

(x)
j

)
+
∑k

j=1(ϕ
(x)
j log ϕ

(x)
j + (1− ϕ

(x)
j ) log(1− ϕ(x))j)


Ignoring the constraints on ϕ, by first order optimality conditions we have:

log
ϕ
(x)
m

1− ϕ
(x)
m

=am + ⟨x(i),B−,m⟩ −
d∑

j=1

U
(x)
j,m

ϕ(x)
m =σ

am + ⟨x(i),B−,m⟩ −
d∑

j=1

U
(x)
j,m


where B−,m denotes column m of matrix B. Note that in the last equation, each ϕ

(x)
m depends

on the values in ϕ(x) via the matrix U (x). However, each vector ϕ(x) is independent of the proposal
parameters of other datapoints. We can solve the equations defined by first order optimality conditions
via standard iterative methods, i.e. we initialize ϕ(x) randomly and update its value with the right-
hand side of the last equation for a prefixed number of iterations. The resulting solution will always
satisfies constraints on ϕ(x).
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