
PGM - Convex analysis - exercise solutions

Caio Corro

1 Convex combination

Question. Let U be a convex set and n a strictly positive integer. Prove that:

∀u(1)...u(n),µ ∈ △(n) :

n∑
i=1

µiu
(i) ∈ U.

Answer. Proof by induction. Let P (n) be the property that
∑n

i=1 µiu
(i) ∈ U , ∀u(1)...u(n),µ ∈ △(n).

• Initialization: P (2) is true by definition of a convex set.

• We assume P (n), n ≥ 2 is true, and prove that then P (n + 1) is true. We rewritte the convex
combination as follows:

n+1∑
i=1

µiu
(i) = µi+1u

(i+1) +

n∑
i=1

µiu
(i)

Wlog, we assume that µi+1 < 1.

= µi+1u
(i+1) + (1− µi+1)

n∑
i=1

µi

1− µi+1
u(i)

By definition of a convex set, we can see that
∑n+1

i=1 µiu
(i)µiu

(i) ∈ U if
∑n

i=1
µi

1−µi+1
∈ U . We

have:

n∑
i=1

µi

1− µi+1
µiu

(i) =

n∑
i=1

µi

1− (1−
∑n

j=1 µj)
u(i)

=

n∑
i=1

µi∑n
j=1 µj

u(i)

Note that the denominator ensure that the ”weightning” term sums to one, therefore, as P (n)
is true:

∈ U.

2 Sum of convex functions

Question. Let f (1)...f (n) be convex functions and w ∈ Rn
+. Prove that the function f defined as

follows is convex:

f(u) =

n∑
i=1

wif
(i)(u).
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Answer. Let u,v ∈ dom f and ϵ ∈ [0, 1]. Then:

f(ϵu+ (1− ϵ)v) =

n∑
i=1

wif
(i)(ϵu+ (1− ϵ)v)

By convexity of each f (i) and the fact that w ≥ 0:

≤
n∑

i=1

wi

(
ϵf (i)(u) + (1− ϵ)f (i)(v)

)
= ϵ

n∑
i=1

wif
(i)(u) + (1− ϵ)

n∑
i=1

wif
(i)(v)

= ϵf(u) + (1− ϵ)f(v)

Hence f is convex.

3 Biconjugate computation

Question. f : Rk → R defined as f(u) = ⟨a,u⟩+ b.

Answer.

f∗(t) = sup
u∈dom f

⟨t,u⟩ − f(u)

= sup
u∈dom f

⟨t,u⟩ − ⟨a,u⟩ − b

= sup
u∈dom f

⟨t− a,u⟩ − b

=

{
−b if t = a

∞ otherwise.

f∗∗(u) = sup
t∈dom f∗

⟨t,u⟩ − f∗(u)

= ⟨a,u⟩+ b

Question. f : R → R defined as f(u) = exp(u).

Answer.

f∗(t) = sup
u∈dom f

ut− f(u)

= sup
u∈dom f

ut− exp(u)

The objective is trivially concave and differentiable. By first order optimality conditions, û is an
maximizer iff:

∂

∂û
(ût− exp(û)) = 0

exp(û) = t

û = log t
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Therefore, we have:

f∗(t) = t log t− t

f∗∗(u) = sup
t∈dom f∗

ut− f∗(t)

= sup
t∈dom f∗

ut− t log t+ t

The objective is trivially concave and differentiable. By first order optimality conditions, t̂ is an
maximizer iff:

∂

∂t̂

(
ut̂− t̂ log t̂+ t̂

)
= 0

log t̂ = u

t̂ = exp(u)

Therefore:

f∗∗(u) = u exp(u)− u exp(u) + exp(u) = exp(u).

Question. f : Rk → R defined as f(u) = log
∑

i expui.

Answer.

f∗(t) = sup
u∈dom f

⟨t,u⟩ − f(u)

sup
u∈dom f

⟨t,u⟩ − log
∑
i

expui

The objective is trivially concave and differentiable. By first order optimality conditions, û is an
maximizer iff:

∇û

(
⟨t, û⟩ − log

∑
i

exp ûi

)
= 0

softmax(û) = t

Importantly, this indicates us that dom f∗ = int(△(k)). It is easy to check that this is equivalent to:

û = log t+ c1

where c ∈ R is any constant. We have:

f∗(t) = ⟨t, log t+ c1⟩ − log
∑
i

exp(c+ log ti)︸ ︷︷ ︸
exp(c)×ti

+δ△(k)(t)

= ⟨t, log t⟩+
∑
i

tic︸ ︷︷ ︸
=c

− log
(
exp(c)

∑
i

ti︸ ︷︷ ︸
=1

)
︸ ︷︷ ︸

=c

+δ△(k)(t)

= ⟨t, log t⟩+ δ△(k)(t)
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which is the negative Shannon entropy function.

f∗∗(u) = sup
t∈dom f∗

⟨t,u⟩ − f∗(t)

= sup
t∈dom f∗

⟨t,u⟩ − ⟨t, log t⟩ − δ△(k)(t)

WARNING: dom f∗ = △(k), we have a constrained optimization problem! So we need to rely on
KKT conditions!

sup
t∈Rk

⟨t,u⟩ − ⟨t, log t⟩

s.t.
∑
i

ti = 1

ti ≥ 0,∀i ∈ 1...k

let λ ∈ R and µ ∈ Rk
+ be dual variables associates with equalities and inequalities, respectively. An

optimal triple t̂, λ̂ and µ̂ must satisfy the following set of equations:

(stationarity)
∂

∂t̂i

(
− ⟨t̂,u⟩+ ⟨t̂, log t̂⟩+ λ(1−

∑
i

t̂i)− ⟨µ, t̂⟩
)
= 0, ∀i ∈ {1...k}

(primal feasibility)
∑
i

t̂i = 1

t̂i ≥ 0, ∀i ∈ 1...k

(primal feasibility) µ̂ ≥ 0

(complementary feasibility) −⟨µ, t̂⟩ = 0

By stationarity, we have:

−ûi + log t̂i + 1− λ̂− µ̂i = 0

log t̂i = ûi − 1 + λ̂+ µ̂i

t̂i = exp(ûi − 1 + λ̂+ µ̂i)

t̂i =
exp(ûi + µ̂i)

exp(1− λ̂)

Note that this means that each element of t̂ is strictly positive, so µ̂ = 0, otherwise complementary
slackness is not satisfied. Moreover, by primal feasilibilty we have:∑

i

t̂i = 1

∑
i

exp(ûi − 1)

exp(1− λ̂)
= 1

exp(1− λ̂) =
∑
i

exp(ûi)

So we have:

t̂i =
exp(ûi)∑
j exp(ûj)

Replacing this in the biconjugate at optimality leads to the log-sum-exp function (which was expected!).
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