Expectation-Maximization algorithm: Gaussian mixture models and Sigmoid belief networks

Caio Corro

Gaussian Mixture Model

Random variables

▶ \mathcal{Y} taking values in $\{1...k\}$ — represents the choice of one (latent) cluster in k

▶ X taking values in \mathbb{R}^d — represents the observed point

Generative story

- 1. $y \sim p_{ heta}(\mathcal{Y})$
- 2. $\boldsymbol{x} \sim p_{\theta}(\mathcal{X}|\mathcal{Y} = \boldsymbol{y})$
- => locally normalized models

Parameterization: $\theta = \{ \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\sigma}^2 \}$

- ▶ Prior distribution: $\lambda \in \triangle(k)$, i.e. $p_{\theta}(\mathcal{Y} = y) = \lambda_y$.
- Conditional distribution: $\boldsymbol{\mu} \in \mathbb{R}^{k \times d}$ and $\boldsymbol{\sigma}^2 \in \mathbb{R}_{++}^{k \times d}$, i.e. $p_{\theta}(\boldsymbol{x}|\boldsymbol{y}) = \prod_{i=1}^{j} p_{\theta}(x_i|\boldsymbol{y}) = \prod_{i=1}^{j} f(x_i, \mu_{y,i}, \sigma_{y,i}^2)$, where f is the PDF of univariate Gaussian distributions.

Gradient-based learning

Let $\mathcal{D} = {\mathbf{x}}_{i=1}^n$ be a training dataset of *n* datapoints.

Training objective

Maximize the log-likelihood of the training data (the evidence of the data)

$$\underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{\boldsymbol{x} \in \mathcal{D}} \log p_{\theta}(\boldsymbol{x}) = \underset{\theta \in \Theta}{\operatorname{arg\,min}} - \sum_{\boldsymbol{x} \in \mathcal{D}} \log p_{\theta}(\boldsymbol{x}) = \underset{\theta \in \Theta}{\operatorname{arg\,min}} - \sum_{\boldsymbol{x} \in \mathcal{D}} \log \underbrace{\sum_{\boldsymbol{y}} p_{\theta}(\boldsymbol{y}) p_{\theta}(\boldsymbol{x}|\boldsymbol{y})}_{\underset{\text{marginalization over latent variables}}$$

where θ is the set of all parameters the GMM and Θ the set of well-defined $\theta.$

Training algorithm

- We can reparameterize the parameters so they are unconstrained
- We can simply use gradient descent on the objective with reparameterized variables! :)

Expectation-Maximization algorithm

Why another algorithm?

Gradient descent:

- Pros: trivial implementation via Pytorch
- Cons: you need to define a stepsize

Expectation-Maximization:

- Pros: no stepsize!
- Cons: you have to write the optimization code yourself

(there are other favors for EM, but outside the scope of this course)

Intuition of EM

- Derive a parameterized lower bound to maximization objective
- Interleave maximization of the lower bound parameters and the model parameters

EM objective

Evidence lower bound (ELBO)

 $\log \mathbb{E}_{p(\mathcal{Y})}[p(\boldsymbol{x}|\mathcal{Y})] \geq \mathbb{E}_{q(\mathcal{Y})}[\log p(\mathcal{Y})p(\boldsymbol{x}|\mathcal{Y})] + H[q(\mathcal{Y})]$

where q is a proposal distribution and H the Shannon entropy.

EM objective

Evidence lower bound (ELBO)

 $\log \mathbb{E}_{p(\mathcal{Y})}[p(\boldsymbol{x}|\mathcal{Y})] \geq \mathbb{E}_{q(\mathcal{Y})}[\log p(\mathcal{Y})p(\boldsymbol{x}|\mathcal{Y})] + H[q(\mathcal{Y})]$

where q is a proposal distribution and H the Shannon entropy.

Proposal distribution for GMMs

$$q_{\phi}(\mathcal{Y} = y | \mathcal{X} = \mathbf{x}) = \phi_{y}^{(\mathbf{x})}$$

where $\phi^{(\mathbf{x})} \in \triangle(k)$ for each \mathbf{x} in the training set. New objective

$$egin{aligned} & \max_{ heta \in \mathcal{D}} & \sum_{m{y}} \log \sum_{m{y}} p_{ heta}(m{y}) p_{ heta}(m{x}|m{y}) \ & \geq & \max_{ heta \in \Theta, \phi \in \Phi} & \sum_{m{x} \in \mathcal{D}} \mathbb{E}_{m{q}_{\phi}(\mathcal{Y}|m{x})}[\log p_{ heta}(m{y}) p_{ heta}(m{x}|m{y})] + H[m{q}_{\phi}(\mathcal{Y}|m{x})] \end{aligned}$$

The two steps of EM

EM objective

$$\begin{split} & \max_{\theta \in \Theta, \phi \in \Phi} \ \sum_{\boldsymbol{x} \in \mathcal{D}} \mathbb{E}_{q_{\phi}(\mathcal{Y}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{y})p_{\theta}(\boldsymbol{x}|\boldsymbol{y})] + H[q_{\phi}(\mathcal{Y}|\boldsymbol{x})] \\ &= \max_{\theta \in \Theta, \phi \in \Phi} \ \sum_{\boldsymbol{x} \in \mathcal{D}} \text{ELBO}(\boldsymbol{x}, \theta, \phi) \end{split}$$

EM algorithm

Compute a sequence of parameters $\phi^{(1)}, \theta^{(1)}, \phi^{(2)}, \theta^{(2)}, \phi^{(3)}, \theta^{(3)}$... as follows:

• E step:
$$\phi^{(t+1)} = \arg \max_{\phi \in \Phi} \sum_{i=1}^{n} \text{ELBO}(\mathbf{x}, \theta^{(t)}, \phi)$$

• M step:
$$\theta^{(t+1)} = \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \operatorname{ELBO}(\boldsymbol{x}, \theta, \phi^{(t+1)})$$

Comments:

 \blacktriangleright the new parameters ϕ computed in the E step are immediately used for the M step

this is just a block coordinate ascent algorithm

Expectation step 1/4

$$\phi^{(t+1)} = rgmax_{\phi \in \Phi} \sum_{oldsymbol{x} \in \mathcal{D}} ext{ELBO}(oldsymbol{x}, heta^{(t)}, \phi^{(t)})$$

Parameter decomposition

The parameters of the proposal distribution decomposes over training examples, so we can compute each one independently:

$$\phi^{(t+1)}(oldsymbol{x}) = rg\max_{oldsymbol{\phi}\in riangle(oldsymbol{k})} \, \operatorname{ELBO}(oldsymbol{x}, heta^{(t)}, oldsymbol{\phi})$$

Intuition

For a given set of parameters θ , the E step computes the best proposal distribution possible (i.e. so the bound is the best possible bound)

Expectation step 2/4

KL divergence

$$D_{ ext{KL}}[q(\mathcal{Y})|p(\mathcal{Y})] = \sum_{y} q(y) \log rac{q(y)}{p(y)}$$

- ▶ non-negative, i.e. $D_{\mathrm{KL}}[q(\mathcal{Y})|p(\mathcal{Y})] \ge 0$
- ▶ non-necessarily symmetric, i.e. $D_{\text{KL}}[q(\mathcal{Y})|p(\mathcal{Y})] \neq D_{\text{KL}}[p(\mathcal{Y})|q(\mathcal{Y})]$
- ▶ null iff the two distributions are equal: $D_{\text{KL}}[q(\mathcal{Y})|p(\mathcal{Y})] = 0 \iff q(y) = p(y), \forall y$

Expectation step 3/4

Evidence lower bound (ELBO)

 $\log \mathbb{E}_{p(\mathcal{Y})}[p(\boldsymbol{x}|\mathcal{Y})] \geq \mathbb{E}_{q(\mathcal{Y})}[\log p(\mathcal{Y})p(\boldsymbol{x}|\mathcal{Y})] + H[q(\mathcal{Y})]$

where q is a proposal distribution and H the Shannon entropy.

ELBO gap

$$\log \mathbb{E}_{p(\mathcal{Y})}[p(\boldsymbol{x}|\mathcal{Y})] - \mathbb{E}_{q(\mathcal{Y})}[\log p(\mathcal{Y})p(\boldsymbol{x}|\mathcal{Y})] + H[q(\mathcal{Y})] = D_{\mathrm{KL}}[q(\mathcal{Y})|p(\mathcal{Y}|\boldsymbol{x})]$$

where $D_{\rm KL}$ is the Kullback-Leibler divergence.

Expectation step 4/4

$$\phi^{(t+1)}(\pmb{x}) = rg\max_{\pmb{\phi} \in riangle(\pmb{k})} \operatorname{ELBO}(\pmb{x}, heta^{(t)}, \pmb{\phi})$$

How to solve the E step?

By the ELBO gap, we know that the objective is maximized if the proposal distribution is equal to the posterior distribution!

$$q(y|\mathbf{x}) = p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{\sum_{y'} p(y')p(\mathbf{x}|y')}$$

=> very easy to compute the optimal parameters ϕ in the E step

Maximization step

$$\theta^{(t+1)} = \operatorname*{arg\,max}_{\theta \in \Theta} \sum_{\mathbf{x} \in \mathcal{D}} \operatorname{ELBO}(\mathbf{x}, \theta, \phi^{(t+1)})$$

How to solve the M step?

Ignore the constraints on the variance parameters, and simply compute the closed form expression using first order optimality methods! **Solution:** looks like "weighted" means and variances.

Exercises

- $1. \ \mbox{Compute the ELBO gap}$
- Derive the E step solution using KKT conditions instead of the ELBO gap

 is the result expected?
- 3. Compute the closed form solution for the M step (for the E step it's too trivial)

Sigmoid belief network (two layers only)

Random variables

- \mathcal{Y} taking values in $[0,1]^k$ (latent)
- \mathcal{X} taking values in $[0,1]^d$ (observed)

Parameterization
$$\theta = \{ \boldsymbol{a}, \boldsymbol{B}, \boldsymbol{c} \}$$

 $p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) = p_{\theta}(\boldsymbol{y})p_{\theta}(\boldsymbol{x}|\boldsymbol{y}) = \prod_{i=1}^{k} p_{\theta}(y_i) \prod_{i=1}^{d} p_{\theta}(x_i|\boldsymbol{y}) = \prod_{i=1}^{k} \frac{\exp(y_i a_i)}{1 + \exp(a_i)} \prod_{i=1}^{d} \frac{\exp(x_i(\boldsymbol{B}_i \boldsymbol{y} + c_i))}{1 + \exp(\boldsymbol{B}_i \boldsymbol{y} + c_i)}$

where $\boldsymbol{a} \in \mathbb{R}^k$, $\boldsymbol{B} \in \mathbb{R}^{d \times k}$ and $\boldsymbol{c} \in \mathbb{R}^d$.

Generative story

- 1. $oldsymbol{y} \sim oldsymbol{p}_{ heta}(\mathcal{Y})$
- 2. $\pmb{x} \sim p_{\theta}(\mathcal{X}|\mathcal{Y} = \pmb{y})$

=> sampling from independant Bernoullis

SBN training

Can we directly use gradient ascent to? Evidence of a training datapoint $x \in D$:

$$\log p_{ heta}(oldsymbol{x}) = \log \sum_{oldsymbol{y}} p_{ heta}(oldsymbol{y}) p_{ heta}(oldsymbol{x}|oldsymbol{y})$$

=> sum over 2^k values for y, intractable!!! We can't even compute the objective, not even mentioning the gradient

SBN training

Can we directly use gradient ascent to? Evidence of a training datapoint $x \in D$:

$$\log p_{ heta}(oldsymbol{x}) = \log \sum_{oldsymbol{y}} p_{ heta}(oldsymbol{y}) p_{ heta}(oldsymbol{x}|oldsymbol{y})$$

=> sum over 2^k values for y, **intractable!!!** We can't even compute the objective, not even mentioning the gradient

Can we apply EM?

- ▶ The proposal distribution $q_{\phi}(\mathbf{y}|\mathbf{x})$ would require 2^{k} parameters per training point
- The E step closed-form expression requires summing over 2^k values (denominator in Bayes rule)
- => intractable again :(

Mean Field Theory (MFT)

Mean Field assumption

Assume independence between dimension of latent space in the proposal distribution:

$$q_{\phi}(\pmb{z}|\pmb{x}) = \prod_{i=1}^{k} (\phi_{i}^{(\pmb{x})})^{z_{i}} (1 - \phi^{(\pmb{x})})_{i}^{1-z_{i}}$$

where $\phi^{(\mathbf{x})} \in [0,1]^k$ are the parameters of the proposal distribution associated with observation \mathbf{x} .

What does it changes?

- Cons: (probably) not possible to have a tight ELBO anymore (gap = 0)
- Pros: can make computation tractable

$$\begin{split} \mathsf{ELBO for SBNs} \\ \mathsf{log} \, p_{\theta}(\mathbf{x}) &= \mathsf{log} \sum_{\mathbf{y} \in Y} p_{\theta}(\mathbf{y}) p_{\theta}(\mathbf{x} | \mathbf{y}) \\ &\geq \underbrace{\mathbb{E}_{q_{\phi}(\mathcal{Y} | \mathbf{x})}[\mathsf{log} \, p_{\theta}(\mathcal{Y})]}_{(\mathsf{a})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathcal{Y} | \mathbf{x})}[\mathsf{log} \, p_{\theta}(\mathbf{x} | \mathcal{Y})]}_{(\mathsf{b})} + \underbrace{\mathcal{H}^{\mathrm{S}}[q_{\phi}(\mathcal{Y} | \mathbf{x})]}_{(\mathsf{c})} \end{split}$$

ELBO for SBNs

$$\log p_{\theta}(\mathbf{x}) = \log \sum_{\mathbf{y} \in \mathbf{Y}} p_{\theta}(\mathbf{y}) p_{\theta}(\mathbf{x}|\mathbf{y})$$

$$\geq \underbrace{\mathbb{E}_{q_{\phi}(\mathcal{Y}|\mathbf{x})}[\log p_{\theta}(\mathcal{Y})]}_{(\mathbf{a})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathcal{Y}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathcal{Y})]}_{(\mathbf{b})} + \underbrace{H^{\mathrm{S}}[q_{\phi}(\mathcal{Y}|\mathbf{x})]}_{(\mathbf{c})}$$

$$\geq \underbrace{\langle \mathbf{a}, \phi^{(\mathbf{x})} \rangle - \sum_{i=1}^{k} \log(1 + \exp(a_{i}))}_{(\mathbf{a})}$$

ELBO for SBNs

$$\log p_{\theta}(\mathbf{x}) = \log \sum_{\mathbf{y} \in Y} p_{\theta}(\mathbf{y}) p_{\theta}(\mathbf{x}|\mathbf{y})$$

$$\geq \underbrace{\mathbb{E}_{q_{\phi}(\mathcal{Y}|\mathbf{x})}[\log p_{\theta}(\mathcal{Y})]}_{(\mathbf{a})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathcal{Y}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathcal{Y})]}_{(\mathbf{b})} + \underbrace{H^{S}[q_{\phi}(\mathcal{Y}|\mathbf{x})]}_{(\mathbf{c})}$$

$$\geq \underbrace{\langle \mathbf{a}, \phi^{(\mathbf{x})} \rangle - \sum_{i=1}^{k} \log(1 + \exp(a_{i}))}_{(\mathbf{a})}$$

$$\underbrace{\langle \mathbf{x}, \mathbf{B}\phi^{(\mathbf{x})} \rangle + \langle \mathbf{x}, \mathbf{c} \rangle - \sum_{i=1}^{d} \log \left(1 + \exp(c_{i}) \prod_{j=1}^{k} (1 - \phi_{j}^{(\mathbf{x})} + \phi_{j}^{(\mathbf{x})} \exp(B_{i,j}))\right)}_{\text{lower bound on (b)}}$$

ELBO for SBNs

$$\log p_{\theta}(\mathbf{x}) = \log \sum_{\mathbf{y} \in Y} p_{\theta}(\mathbf{y}) p_{\theta}(\mathbf{x}|\mathbf{y})$$

$$\geq \underbrace{\mathbb{E}_{q_{\phi}(\mathcal{Y}|\mathbf{x})}[\log p_{\theta}(\mathcal{Y})]}_{(\mathbf{a})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathcal{Y}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathcal{Y})]}_{(\mathbf{b})} + \underbrace{\mathcal{H}^{\mathrm{S}}[q_{\phi}(\mathcal{Y}|\mathbf{x})]}_{(\mathbf{c})}$$

$$\geq \underbrace{\langle \mathbf{a}, \phi^{(\mathbf{x})} \rangle - \sum_{i=1}^{k} \log(1 + \exp(a_{i})))}_{(\mathbf{a})}$$

$$\underbrace{\langle \mathbf{x}, \mathbf{B}\phi^{(\mathbf{x})} \rangle + \langle \mathbf{x}, \mathbf{c} \rangle - \sum_{i=1}^{d} \log \left(1 + \exp(c_{i}) \prod_{j=1}^{k} (1 - \phi_{j}^{(\mathbf{x})} + \phi_{j}^{(\mathbf{x})} \exp(B_{i,j}))\right)}_{\text{lower bound on } (\mathbf{b})}$$

$$\underbrace{\sum_{i=1}^{k} \left(\phi_{i}^{(\mathbf{x})} \log \phi_{i}^{(\mathbf{x})} + (1 - \phi_{i}^{(\mathbf{x})}) \log(1 - \phi_{i}^{(\mathbf{x})})\right)}_{(\mathbf{c})}$$

Mean Field EM for SBN

Algorithm

•••

- **E** step: maximize the ELBO:
 - 1. write down the first-order optimality condition for ϕ
 - 2. solve the resulting problem with iterative equation solving method
- \blacktriangleright M step: one step of gradient ascent on the ELBO wrt model parameters heta

Difference with GMMs

- \blacktriangleright Cannot use the $\rm ELBO$ gap and Bayes rule in EM
- ► No closed-form expression for step E or M

Upper bound on the evidence

Question

As we cannot close the Elbo gap in the E step, how to evaluate the quality of the resulting bound?

Upper bound on the evidence

Question

As we cannot close the Elbo gap in the E step, how to evaluate the quality of the resulting bound?

Variational formulation of the sigmoid $\sigma(u) = \inf_{\epsilon \in [0,1]} \exp(\epsilon u - H^{\text{FD}}[\epsilon])$

where
$$H^{ ext{FD}}[\epsilon]=-\epsilon\log\epsilon-(1-\epsilon)\log(1-\epsilon)$$
 is the Fermi-Dirac entropy.

Upper bound

For any $\epsilon \in [0,1]^d$:

$$\log p_{\theta}(\boldsymbol{x}) \leq \left(\begin{array}{c} -\sum_{i=1}^{d} H^{\text{FD}}[\epsilon_{1}] + \sum_{i=1}^{d} \epsilon_{i} c_{i}(2x_{i}-1) \\ + \sum_{j=1}^{k} \left(1 - \sigma(a_{i}) + \sigma(a_{i}) \exp(\sum_{i=1}^{d} \epsilon_{i} \boldsymbol{B}_{i,j}(2x_{i}-1))\right)\end{array}\right)$$

(not trivial to find the best variational parameters for this bound!)